Simulation of ion irradiation of crystalline and amorphous targets tokamak-reactor first wall materials
Meluzova D. S.1, Babenko P. Yu.1, Zinoviev A. N.1, Shergin A. P.1
1Ioffe Institute, St. Petersburg, Russia
Email: dmeluzova@gmail.com

PDF
An overview of results concerning simulation of various processes which occur due to atomic bombardment of crystalline and amorphous solids is presented. With the use of original computational codes, the following data were obtained: reflection coefficients, projected energy losses and ranges of ions in solids, channeling data as well as sputtering yield and its dependence on incident angle of bombarding particles for Be-W and Ne-W combinations. Be, C and W targets were studied as these are among the plasma-facing materials in tokamaks, including ITER. The emphasis was made on atom-target combinations which lack reliable experimental data. Experimental data on other materials were used to verify calculations. A significant influence of the interaction potential used on the simulation results is shown. The reviewed results are tied by a common subject a study of interaction of plasma ions and first-wall materials of a tokamak-reactor and also by a common method of study the use of an original computational code. Keywords: scattering, ion sputtering, interaction potential, energy release.
  1. V. Borovikov, A.F. Voter, X.-Z. Tang. J. Nucl. Mater., 447 (1), 254 (2014). DOI: 1016/j.jnucmat.2014.01.021
  2. P.N. Maya. J. Nucl. Mater., 480, 411 (2016). DOI: 10.1016/j.jnucmat.2016.08.007
  3. V.V. Bandurko, N.N. Koborov, V.A. Kurnaev, V.M. Sotnikov, O.V. Zabeyda. J. Nucl. Mater., 176- 177, 630 (1990). DOI: 10.1016/0022-3115(90)90118-7
  4. C.K. Chen, B.M.U. Scherzer, W. Eckstein, Appl. Phys. A, 33, 265 (1984)
  5. P.Yu. Babenko, M.I. Mironov, V.S. Mikhailov, A.N. Zinoviev. Plasma Phys. Control. Fusion, 62, 045020 (2020). DOI: 10.1088/1361-6587/ab7943
  6. S. Makarov, E. Kaveeva. MATEC Web Conf. EECE-2018, 245, 13002 (2018). DOI:10.1051/matecconf/201824513002
  7. F. Ko chl, A. Loarte, E. de la Luna, V. Parail, G. Corrigan, D. Harting, I. Nunes, C. Reux, F.G. Rimini, A. Polevoi, M. Romanelli and JET Contributors. Plasma Phys. Control. Fusion, 60, 074008 (2018). DOI: 10.1088/1361-6587/aabf52
  8. T. Abrams, E.A. Unterberg, D.L. Rudakov, A.W. Leonard, O. Schmitz, D. Shiraki, L.R. Baylor, P.C. Stangeby, D.M. Thomas, H.Q. Wang. Phys. Plasmas, 26, 062504 (2019). DOI:10.1063/1.5089895
  9. A.N. Zinoviev, K. Nordlund. Nucl. Instrum. Methods Phys. Res. B, 406, 511 (2017). DOI: 10.1016/j.nimb.2017.03.047
  10. J.F. Ziegler, J.P. Biersack, U. Littmark. The Stopping and Range of Ions in Solids, (Pergamon, NY., 1985)
  11. D.S. Meluzova, P.Yu. Babenko, A.P. Shergin, K. Nordlund, A.N. Zinoviev. Nucl. Instrum. Methods Phys. Res. B, 460, 4 (2019). DOI: 10.1016/j.nimb.2019.03.037
  12. H. Paul. IAEA NDS. https://www-nds.iaea.org/stopping
  13. A. Lasa, C. Bjorkas, K. Vo rtler, K. Nordlund. J. Nucl. Mater., 429, 284 (2012). DOI: 10.1016/j.jnucmat.2012.06.012
  14. D.K. Kogut, N.N. Trifonov, V.A. Kurnaev. Bulletin of the Russian Academy of Sciences: Physics, 72 (7), 969 (2008)
  15. D.S. Meluzova, P.Yu. Babenko, A.P. Shergin, A.N. Zinoviev. J. Surf. Invest., 14, 738 (2020). DOI: 10.1134/S102745102004014X
  16. D.S. Meluzova, P.Yu. Babenko, A.P. Shergin, A.N. Zinoviev. Tech. Phys., 65 (1), 145 (2020). DOI: 10.1134/S106378422001017X
  17. E. Ligeon, A. Guivarc'h. Rad. Eff., 27 (3--4), 129 (1976). DOI: 10.1080/00337577608243025
  18. M. Weiser, M. Behar, S. Kalbitzer, P. Oberschachtsiek, D. Fink, G. Frech. Nucl. Instrum. Methods Phys. Res. B, 29, 487 (1987). DOI: 10.1016/0168-583X(87)90073-5
  19. D.S. Meluzova, P.Yu. Babenko, M.I. Mironov, V.S. Mikhailov, A.P. Shergin, A.N. Zinoviev. Tech. Phys. Lett., 45 (6), 580 (2019). DOI: 10.1134/S1063785019060130
  20. D.S. Meluzova, P.Yu. Babenko, M.I. Mironov, V.S. Mikhailov, A.P. Shergin, A.N. Zinoviev. AIP Conf. Proc., 2179, 020018 (2019). DOI: 10.1063/1.5135491
  21. D.S. Meluzova, P.Yu. Babenko, A.P. Shergin, A.N. Zinoviev. Pis'ma v ZhTF (in Russian), 46 (5), 34 (2020). DOI: 10.21883/PJTF.2020.05.49106.18034 [D.S. Meluzova, P.Yu. Babenko, A.P. Shergin, A.N. Zinoviev. Tech. Phys. Lett., 46 (3), 235 (2020). DOI: 10.1134/S1063785020030104]
  22. S.I. Matyukhin. Tech. Phys., 53 (12), 1578 (2008). DOI: 10.1134/S1063784208120074
  23. L.C. Feldman, J.W. Mayer, S.T. Picraux. Materials Analysis by Ion Channeling (Academic Press, San Diego, 1982)
  24. M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, F. Willaime. J. Phys.: Condens. Matter., 25, 395502 (2013). DOI: 10.1088/0953-8984/25/39/395502
  25. R. Behrisch, W. Eckstein. Sputtering by Particle Bombardment (Springer, Berlin, 2007)
  26. J.F. Ziegler, J.P. Biersack. SRIM. http://www.srim.org
  27. X. Yang, A. Hassanein. Appl. Surf. Sci., 293, 187 (2014). DOI:10.1016/j.apsusc.2013.12.129

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru