Electrical stimulation of human dermal fibroblasts on conducting matrix
Kolbe K. A.1,2, Shishov M. A.1,2, Sapurina I. Yu.2, Smirnova N. V.1,2, Kodolova-Chukhontseva V. V.1, Dresvyanina E. N.1, Kamalov A. M.1, Yudin V.E 1,2
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
Email: nvsmirnoff@yandex.ru

PDF
Conducting composite based on biocompatible chitosan and single wall carbon nanotubes was used as a matrix for electrical stimulation of human fibroblasts. Parameters of ionic and electronic currents passing through the matrix upon applying cyclic potentials (±100 mV) were studied; the scaffold demonstrated high stability in the course of prolonged electric cycling. It was shown that preliminary electrical stimulation facilitated proliferative activity of human dermal fibroblasts in comparison to that of intact cells. Keywords: chitosan/carbon nanotube composite, electrical stimulation, dermal fibroblasts.
  1. J. Day, J. Newman. Curr. Orthop. Pract., 31 (4), 394 (2020). DOI: 10.1097/BCO.0000000000000889
  2. M.R. Love, S. Palee, S.C. Chattipakorn, N. Chattipakorn. J. Cell Physiol., 233, 1860 (2018). https://doi.org/10.1002/jcp.25975
  3. J. Hunckler, A. de Mel, J. Multidiscip. Healthcare, 10, 179 (2017). https://doi.org/10.2147/JMDH.S127207
  4. R. Feiner, L. Engel, S. Fleischer, M. Malki, I. Gal, A. Shapira, Y. Shacham-Diamand, T. Dvir. Nat. Rev. Mater., 3 (1), 317076 (2018). DOI: 10.1038/nmat4590
  5. V. Lundin, A. Herland, M. Berggren, E.W.H. Jager, A.I. Teixeira. PLoS ONE, 6 (4), e18624 (2011). https://doi.org/10.1371/journal.pone.0018624
  6. E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale. J. Med. Chem., 63 (1), 1 (2020). DOI: 10.1021/acs.jmedchem.9b00803
  7. Y. Liu, P. Yin, J. Chen, B. Cui, Ch. Zhang, F.Wu. Hindawi. Int. J. Polym. Sci., 2020, 5659682 (2020). https://doi.org/10.1155/2020/5659682
  8. I.Yu. Sapurina, V.V. Matrenichev, E.N. Vlasova, M.A. Shishov, E.M. Ivan'kova, I.P. Dobrovolskaya, V.E. Yudin. Polym. Sci. Ser. B, 62, 116 (2020). DOI: 10.1134/S156009042001008X
  9. M.J. Ahmeda, B.H. Hameedb, E.H. Hummadic. Carbohydr. Polym., 247, 116690 (2020). https://doi.org/10.1016/j.carbpol.2020.116690
  10. M. Rayung, M.M. Aung, Sh.Ch. Azhar, L.Ch. Abdullah, M.S. Su'ait, A. Ahmad, S.N.A. Md Jamil. Materials, 13 (4), 838 (2020). DOI: 10.3390/ma13040838
  11. S. Bandara, H. Du, L. Carson, D. Bradford, R. Kommalapati. J. Nanomater., 10 (10), 1903 (2020). DOI: 10.3390/nano10101903
  12. A.P.A. de Carvalho, C.A. Conte. Trends Food Sci. Technol., 103, 130 (2020). DOI: 10.1016/j.tifs.2020.07.012
  13. M.J. Ahmeda, B.H. Hameedb, E.H. Hummadic. Carbohydr. Polym., 247, 116690 (2020). https://doi.org/10.1016/j.carbpol.2020.116690
  14. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski. J. Control. Release, 70 (1-2), 1 (2001)
  15. L. Zheng, Sh. Wu, L. Tan, H. Tan, B. Yu. J. Biomater. Appl., 31 (3), 379 (2016). DOI: 10.1177/0885328216651183
  16. G. Lekshmi, S.S. Sana, V.-H. Nguyen, Th.H.Ch. Nguyen, Ch.Ch. Nguyen, Q. Van Le, W. Peng. Int. J. Mol. Sci., 21, 6440 (2020). DOI: 10.3390/ijms21176440
  17. J. Venkatesana, BoMi Ryua, P.N. Sudhac, S.-K. Kima. Int. J. Biol. Macromol., 50, 393 (2012). DOI: 10.1016/j.ijbiomac.2011.12.032
  18. L. Carson, C.K. Brown, M. Stewart, A. Oki, G. Regisford, Zh. Luo, V.I. Bakhmutov. Mater. Lett., 63, 617 (2009). DOI: 10.1016/j.matlet.2008.11.060
  19. S. Pok, F. Vitale, Sh.L. Eichmann, O.M. Benavides, M. Pasquali, J.G. Jacot. ASC Nano., 8 (10), 9822 (2014). DOI: 10.1021/nn503693h
  20. H.U. Lee, Ch. Park, J.Y. Park. RSC Adv., 6, 2149 (2016). DOI: 10.1039/c5ra23791b
  21. O.B. Mergen, E. Arda, G.A. Evingu. J. Compos. Mater., 54 (11), 1497 (2019). DOI: 10.1177/0021998319883916
  22. E. Dresvyanina, A. Yudenko, E. Maevskaya, V. Yudin, N. Yevlampieva, A. Gubarev, M. Slyusarenko, K. Heppe. Vlak. Textil., 25 (2), 27 (2018)
  23. N.V. Smirnova, K.A. Kolbe, E.N. Dresvyanina, S.F. Grebennikov, I.P. Dobrovolskaya, V.E. Yudin, Th. Luxbacher, P. Morganti. Mater., 12 (11), 1874 (2019). https://doi.org/10.3390/ma12111874
  24. T.V. Smotrina, E.N. Dresvyanina, S.F. Grebennikov., M.O. Kazakov, T.P Maslennikova, I.P. Dobrovolskaya, V.E. Yudin. Polymer, 7 (2), 28 (2020). https://doi.org/10.3390/cosmetics7020028
  25. K.A. Kolbe, A.M. Kamalov, E.G. Feklistov, N.V. Smirnova, V.V. Kodolova-Chukhontseva, E.N. Dresvyanina, I.P. Dobrovolskaya, G.V. Vaganov, V.E. Yudin. J. Phys. Conf. Ser., 1695, 012054 (2020). DOI:10.1088/1742-6596/1695/1/012054
  26. N.A.H. Rosli, K.Sh. Loh, W.Y. Wong, R.M. Yunus, T.Kh. Lee, A. Ahmad, S.T. Chong. Int. J. Mol. Sci., 21 (2), 632 (2020). DOI: 10.3390/ijms21020632
  27. V.S. Bagotsky. Fundamentals of Electrochemistry (Chemistry, M., 1988), p. 400
  28. F.X. Hart. In: The Physiology of Bioelectricity in Development, Tissue Regeneration and Cancer, ed. by Ch.E. Pullar (CRC Press, 2018), p. 22. ISBN 9781138077836
  29. I. Titushkin, M. Cho. Biophys. J., 96 (2), 717 (2009). https://doi.org/10.1016/j.bpj.2008.09.035
  30. I.A. Titushkin, V.S. Rao, M.R. Cho. IEEE Tr. Plasma Sci., 32 (4), 1614 (2004). https://doi.org/10.1109/TPS.2004.832625

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru