Te-hyperdoped silicon layers for visible-to-infrared photodiodes
F.F. Komarov1,2, S.B. Lastovsky3, I.A. Romanov4, I.N. Parkhomenko4, L.A. Vlasukova4, G.D.Ivlev4, Berencen Y.5, A.A. Tsivako6, N.S. Kovalchuk6, Wendler E.7
1A.N. Sevchenko Institute of Applied Phisics Problems of Belarusian State University, Minsk, Republic of Belarus
2National University of Science and Technology MISiS, Moscow, Russia
3Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk, Belarus
4Belarusian State University, Minsk, Republic of Belarus
5Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Institute of Ion Beam Physics and Materials Research, Dresden, Germany
6JSC Integral, Minsk, Belarus
7Institute for Solid State Physics, Friedrich-Schiller-University Jena, Jena, Germany
Email: komarovf@bsu.by

PDF
Silicon layers doped with tellurium up to concentration (3-5)·1020 cm-3 have been formed by ion implantation with subsequent pulsed laser annealing. It was shown that 70-90% of the introduced impurity is in the substitution position in the silicon lattice. Te hyperdoped silicon layers exhibit significant absorption (35-65%) both in the visible and near IR (1100-2500 nm) spectral ranges, and the absorption increases with increasing wavelength. The current-voltage and capacitance-voltage characteristics, as well as the photosensitivity of photodetectors based on Te-doped silicon layers have been presented and discussed. The residual structural defects in implanted Si layers have been investigated by deep-level transient spectroscopy. Keywords: silicon, hyperdoping, tellurium implantation, laser annealing, impurity subband, deep-level transient spectroscopy.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru