Te-hyperdoped silicon layers for visible-to-infrared photodiodes
F.F. Komarov1,2, S.B. Lastovsky3, I.A. Romanov4, I.N. Parkhomenko4, L.A. Vlasukova4, G.D.Ivlev4, Berencen Y.5, A.A. Tsivako6, N.S. Kovalchuk6, Wendler E.7
1A.N. Sevchenko Institute of Applied Phisics Problems of Belarusian State University, Minsk, Republic of Belarus
2National University of Science and Technology MISiS, Moscow, Russia
3Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk, Belarus
4Belarusian State University, Minsk, Republic of Belarus
5Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Institute of Ion Beam Physics and Materials Research, Dresden, Germany
6JSC Integral, Minsk, Belarus
7Institute for Solid State Physics, Friedrich-Schiller-University Jena, Jena, Germany
Email: komarovf@bsu.by

PDF
Silicon layers doped with tellurium up to concentration (3-5)·1020 cm-3 have been formed by ion implantation with subsequent pulsed laser annealing. It was shown that 70-90% of the introduced impurity is in the substitution position in the silicon lattice. Te hyperdoped silicon layers exhibit significant absorption (35-65%) both in the visible and near IR (1100-2500 nm) spectral ranges, and the absorption increases with increasing wavelength. The current-voltage and capacitance-voltage characteristics, as well as the photosensitivity of photodetectors based on Te-doped silicon layers have been presented and discussed. The residual structural defects in implanted Si layers have been investigated by deep-level transient spectroscopy. Keywords: silicon, hyperdoping, tellurium implantation, laser annealing, impurity subband, deep-level transient spectroscopy.
  1. R. Soref. Nat. Photonics, 9, 358 (2015). DOI: 10.1038/nphoton.2015.87
  2. X. Liu, B. Kuyken, G. Roelkens, R. Baets, R.M. Osgood Jr, W.M.J. Green. Nat. Photonics, 6, 667 (2012). DOI: 10.1038/nphoton.2012.221
  3. J.J. Ackert, D.J. Thompson, L. Shen, A.C. Peacock, P.E. Jessop, G.T. Reed, G.Z. Mashanovich, A.P. Knights. Nat. Photonics, 9, 393 (2015). DOI: 10.1038/nphoton.2015.81
  4. P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. Le Roux, S. Edmond, E. Cassan, J.-R. Coudevylle, L. Vivien. Appl. Phys. Lett., 98, 131112 (2011). DOI: 10.1063/1.3574539
  5. M. Casalino, G. Coppola, M. Iodice, I. Rendina, L. Sirleto. Sensors, 10, 10571 (2010). DOI: 10.3390/s101210571
  6. J. Bradley, P. Jessop, A. Knights. Appl. Phys. Lett., 86, 241103 (2005). DOI: 10.1063/1.1947379
  7. J. Doylend, P. Jessop, A. Knights. Opt. Express, 18, 14671 (2010). DOI: 10.1364/OE.18.014671
  8. A. Rogalski. Prog. Quantum. Electron, 27, 59 (2003). DOI: 10.1016/S0079-6727(02)00024-1
  9. N. Sclar. Prog. Quantum. Electron, 9, 149 (1984). DOI: 10.1016/0079-6727(84)90001-6
  10. C.B. Simmons, A.J. Akey. J.P. Mailoa, D. Recht, M.J. Aziz, T. Bounassisi. Adv. Fun Mater., 24, 2852 (2014). DOI: 10.1002/adfm.201303820
  11. X. Qiu, Z. Wang, X. Hou, X. Yu, D. Yang. Photonics Res., 7, 351 (2019). DOI: 10.1364/PRJ.7.000351
  12. E. Garcia-Hemme, R. Garcia-Hernansanz, J. Olea, D. Pastor. A. del Prado, I. Martil, G. Gonzales-Diaz. Appl. Phys. Lett., 103, 032101 (2013). DOI: 10.1063/1.4813823
  13. H. Vydyanath, J. Lorenzo, F. Kroger. J. Appl. Phys., 49, 5928 (1978). DOI: 10.1063/1.324560
  14. M.T. Winkler, D. Recht, M.J. Sher, A.J. Said, E. Mazur, M.J. Aziz. Phys. Rev. Lett., 106, 178701 (2011). DOI: 10.1103/PhysRevLett.106.178701
  15. H. Mehrer. Diffusion in Solids: Fundamentals, Methdos, Material, Diffusion-Controlled Processes (Springer Science and Business Media, NY., 2007), v. 155
  16. I. Umezu, J.M. Warrender, S. Charnvanichborikarn, A. Kohno, J.S. Williams, M. Tabbal, D.G. Papazoglou, Xi-Ch. Zhang, M.J. Aziz. J. Appl. Phys., 113, 213501 (2013). DOI: 10.1063/1.4804935
  17. E. Schibli, A.G. Milnes. Mater. Sci. Engineer., 2, 173 (1967). DOI:10.1016/0025-5416(67)90056-0
  18. F.F. Komarov, G. Ivlev, G. Zayats, A. Komarov, N. Nechaev, I. Parkhomenko, L. Vlasukova, E. Wendler, S. Miskiewicz. Acta Phys. Polonica, A136, 254 (2019). DOI: 10.12693/APhysPolA.136.254
  19. F.F. Komarov, N. Nechaev, G. Ivlev, L. Vlasukova, I. Parkhomen\=ko, E. Wendler, I.A. Romanov, Y. Berencen, V.V. Pilko, D.V. Zhigulin, A.F. Komarov. Vacuum, 178, 109434 (2020). DOI: 10.1016/j.vacuum.2020.109434
  20. Y. Berencen, S. Prucnal, F. Liu, I. Scorupa, R. Hubner. Scientific Reports, 7, 43688 (2017). DOI: 10.1038/srep43688
  21. M. Mayer, SIMNRA User's Guide (Max-Planck-Institut fur Plasmaphysik, Garching, 1997)
  22. D.V. Lang. Appl. Phys., 45, 3023 (1974). DOI: 10.1063/1.1663719
  23. A.F. Komarov, F.F. Komarov, P. Zukowski, C. Karwat, A.L. Shukan. Nukleonika, 44, 363 (1999)
  24. L.C. Feldman, W. Mayer, S.T. Picraux. Materials Analysis by Ion Channeling: Submicron Crystallography (Elsevier, NY., 1982).\
  25. F.F. Komarov, A.P. Novikov, V.S. Solovev, S.Yu. Shiryaev. Structure Defects in Ion-Introduced Silicon (Universitetskoe, Minsk, 1990)
  26. V.E. Borisenko. Solid-phase processes in semiconductors at pulse heating (Navuka i tekhnika, Minsk, 1992)
  27. W. Wesch, E. Glaser, G. Gotz, H. Karge, R. Proger. Phys. Stat. Sol., 65, 225 (1981), DOI:10.1002/pssa.2210650126
  28. R. Shaub, G. Pensl, M. Schulz, C. Holm. Appl. Phys., A34, 215 (1984). DOI: 10.1007/BF00616575.
  29. N.F. Mott. Contemp. Phys., 14, 401 (1973). DOI: 10.1080/00107517308210764
  30. M. Wang, A. Debernardi, Y. Berencen, R. Heller, C. Xu, Y. Yuan, Y. Xie, R. Bottger, L. Rebohle, W. Skorupa, M. Helm, S. Prucnal, Sh. Zhou. Phys. Rev. Appl., 11, 054039 (2019). DOI: 10.1103/PhysRevApplied.11.054039
  31. E.F. Schubert. Doping III-V Semiconductors (Cambridge University Press, Cambridge, 1993)
  32. K. Sanchez, I. Aguilera, P. Palacios, P. Wahnon. Phys. Rev., B82, 165201 (2010). DOI:10.1103/Phys.RevB.82.165201
  33. N.A. Poklonsky, A.I. Kovalev. Instruments and Methods of Measurement, 9 (2), 130 (2018)
  34. M.E. Levinstein, G.S. Simin. Barriers from Crystal to Integrated Circuit (Nauka, M., 1987)
  35. D.V. Lang. J. Appl. Phys., 45 (2), 3023 (1974). DOI: 10.1063/1.1663719

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru