Investigation of the characteristics of the InGaAs/InAlGaAs superlattice for 1300 nm range vertical-cavity surface-emitting lasers
Blokhin S.A.
1, Babichev A. V.
2, Gladyshev A. G.
2, Karachinsky L. Ya.
1,2,3, Novikov I. I.
1,2,3, Blokhin A.A.
1, Bobrov M. A.
1, Maleev N.A.
1, Kuzmenkov A.G.
4, Nadtochiy A.M.
5, Nevedomskiy V. N.
6, Andryushkin V.V.
2, Rochas S. S.
2, Denisov D. V.
7, Voropaev K. O.
8, Zhumaeva I.O.
8, Ustinov V. M.
4, Egorov А. Yu.
3, Bougrov V.E.
21Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
3Connector Optics LLC, St. Petersburg, Russia
4Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences, St. Petersburg, Russia
5HSE University, St. Petersburg, Russia
6Ioffe Institute, St. Petersburg, Russia
7St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
8OAO OKB-Planeta, Veliky Novgorod, Russia
Email: blokh@mail.ioffe.ru, a.babichev@mail.ioffe.ru, leonid.karachinsky@connector-optics.com, Innokenty.Novikov@connector-optics.com, bloalex91@yandex.ru, bobrov.mikh@gmail.com, Maleev@beam.ioffe.ru, kuzmenkov@mail.ioffe.ru, anadtochiy@hse.ru, nevedom@mail.ioffe.ru, vvandriushkin@itmo.ru, stanislav_rochas@itmo.ru, dmitry.denisov@connector-optics.com, voropaevko@okbplaneta.ru, ZhumaevaIO@okbplaneta.ru, anton@beam.ioffe.ru, vladislav.bougrov@niuitmo.ru
X-ray structural analysis and photoluminescence spectroscopy techniques were used to study heterostructures based on InGaAs/InAlGaAs superlattice for active regions of 1300 nm range lasers grown by molecular beam epitaxy. It is shown that the grown heterostructures have a high crystal quality. The perpendicular lattice mismatch of the average crystal lattice constant of the InGaAs/InAlGaAs superlattice with respect to the crystal lattice constant of the InP substrate is estimated at ~+0.01%. An analysis of the photoluminescence spectra made it possible to conclude that the contribution of Auger recombination is insignificant in the studied range of excitation power density. Studies of vertical-cavity surface-emitting lasers with an active region based on the InGaAs/InAlGaAs superlattice made it possible to estimate the gain coefficient at a level of 650 cm-1 for the standard logarithmic approximation of the dependence of the gain on the current density. The transparency current density of the laser was 400-630 A/cm2, which is comparable to the record low values for the case of highly strained InGaAs-GaAs and InGaAsN-GaAs quantum wells in the spectral ranges of 1300 nm, respectively. Keywords: superlattice, vertical-cavity surface-emitting laser, optical gain.
- M.V.R. Murty, J. Wang, A.L. Harren, A.-N. Cheng, D.W. Dolfi, Z.-W. Feng, A. Sridhara, S.T. Joyo, J. Chu, L.M. Giovane. IEEE Photonics Technol. Lett., 33 (16), 812 (2021). DOI: 10.1109/lpt.2021.3069146
- Z. Ruan, Y. Zhu, P. Chen, Y. Shi, S. He, X. Cai, L. Liu. J. Lightwave Technol., 38 (18), 5100 2020. DOI:10.1109/jlt.2020.2999526
- M. G ebski, D. Dontsova, N. Haghighi, K. Nunna, R. Yanka, A. Johnson, R. Pelzel, J.A. Lott. OSA Continuum, 3 (7), 1952 (2020). DOI: 10.1364/osac.396242
- VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Springer Series in Optical Sciences, ed. R. Michalzik (Springer, Berlin, Heidelberg, 2013) DOI: 10.1007/978-3-642-24986-0
- J. Minch, S.H. Park, T. Keating, S.L. Chuang. IEEE J. Quant. Electron., 35 (5), 771 (1999). DOI: 10.1109/3.760325
- J.C.L. Yong, J.M. Rorison, I.H. White. IEEE J. Quant. Electron., 38 (12), 1553 (2002). DOI: 10.1109/jqe.2002.805100
- Y.-K. Kuo, S.-H. Yen, M.-W. Yao, M.-L. Chen, B.-T. Liou. Opt. Commun., 275 (1), 156 (2007). DOI: 10.1016/j.optcom.2007.02.025
- M. Muller, C. Grasse, M.C. Amann. In Proc. 2012 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, Coventry, UK, 2012) DOI: 10.1109/icton.2012.6254394
- S. Spiga, M.C. Amann. "High-Speed InP-Based Long-Wavelength VCSELs," Green Photonics and Electronics, ed. G. Eisenstein, D. Bimberg. (Springer, Cham, 2017), p. 17-35. DOI: 10.1007/978-3-319-67002-7_2
- C. Grasse, M. Mueller, T. Gruendl, G. Boehm, E. Roenneberg, P. Wiecha, J. Rosskopf, M. Ortsiefer, R. Meyer, M.-C. Amann. J. Cryst. Growth, 370, 217 (2013). DOI: 10.1016/j.jcrysgro.2012.06.051
- E.S. Kolodeznyi, S.S. Rochas, A.S. Kurochkin, A.V. Babichev, I.I. Novikov, A.G. Gladyshev, L.Y. Karachinskii, D.V. Denisov, Y.K. Bobretsova, A.A. Klimov, S.A. Blokhin, K.O. Voropaev, A.S. Ionov. Opt. Spectr., 125 (2), 238 (2018). DOI: 10.1134/s0030400x18080143
- M. Muller, P. Debernardi, C. Grasse, T. Grundl, M.-C. Amann. IEEE Photonics Technol. Lett., 25 (2), 140 (2013). DOI: 10.1109/lpt.2012.2229975
- J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho. Science, 264 (5158), 553 (1994). DOI: 10.1126/science.264.5158.553
- L.Y. Karachinsky, I.I. Novikov, A.V. Babichev, A.G. Gladyshev, E.S. Kolodeznyi, S.S. Rochas, A.S. Kurochkin, Y.K. Bobretsova, A.A. Klimov, D.V. Denisov, K.O. Voropaev, A.S. Ionov, V.E. Bougrov, A.Y. Egorov. Opt. Spectr., 127 (6), 1053 (2019). DOI: 10.1134/s0030400x19120099
- C.A. Wang, B. Schwarz, D.F. Siriani, L.J. Missaggia, M.K. Connors, T.S. Mansuripur, D.R. Calawa, D. McNulty, M. Nickerson, J.P. Donnelly, K. Creedon, F. Capasso. IEEE J. Sel. Top. Quant. Electron., 23 (6), 1 (2017). DOI: 10.1109/jstqe.2017.2677899
- B. Schwarz, C.A. Wang, L. Missaggia, T.S. Mansuripur, P. Chevalier, M.K. Connors, D. McNulty, J. Cederberg, G. Strasser, F. Capasso. ACS Photonics, 4 (5), 1225 (2017). DOI: 10.1021/acsphotonics.7b00133
- S.S. Rochas, I.I. Novikov, A.G. Gladyshev, E.S. Kolodeznyi, A.V. Babichev, V.V. Andryushkin, V.N. Nevedomskii, D.V. Denisov, L.Ya. Karachinsky, A.Yu. Egorov, V.E. Bougrov. Tech. Phys. Lett., 46 (11),1128 (2020). DOI: 10.1134/S1063785020110267
- G.M. Yang, M.H. MacDugal, V. Pudikov, P.D. Dapkus. IEEE Photon. Technol. Lett., 7 (11), 1228 (1995). DOI: 10.1109/68.473454
- S.A. Blokhin, S.N. Nevedomsky, M.A. Bobrov, N.A. Maleev, A.A. Blokhin, A.G. Kuzmenkov, A.P. Vasyl'ev, S.S. Rohas, A.V. Babichev, A.G. Gladyshev, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, V.M. Ustinov. Semiconductors, 54, 1276 (2020). DOI: 10.1134/S1063782620100048
- S. Blokhin, A. Babichev, A. Gladyshev, L. Karachinsky, I.Novikov, A. Blokhin, S. Rochas, D. Denisov, K. Voropaev, A. Ionov, N. Ledentsov, A. Egorov. Electron. Lett., (just accepted) (2021). DOI: 10.1049/ell2.12232
- D. Pierscinska, P. Gutowski, G. Ha das, A. Kolek, I. Sankowska, J. Grzonka, J. Mizera, K. Pier sinski, M. Bugajski. Semicond. Sci. Technol., 33 (3), 035006 (2018). DOI: 10.1088/1361-6641/aaa91a
- N. Volet,Optical Mode Control in Long-Wavelength Vertical-Cavity Surface-Emitting Lasers. (Diss. Ph. D. thesis, 2014), DOI: 10.5075/epfl-thesis-6064
- A.V. Babichev, L.Y. Karachinsky, I.I. Novikov, A.G. Gladyshev, S.A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J.P. Turkiewicz, K.O. Voropaev, A.S. Ionov, M. Agustin, N.N. Ledentsov, A.Y. Egorov. IEEE J. Quant. Electron., 53 (6), 1 (2017). DOI: 10.1109/jqe.2017.2752700
- S. Spiga, D. Schoke, A. Andrejew, G. Boehm, M.-C. Amann. J. Lightwave Technol., 35 (15), 3130 (2017). DOI: 10.1109/jlt.2017.2660444
- I. Sankowska, P. Gutowski, A. Jasik, K. Czuba, J. Dabrowski, M. Bugajski. J. Appl. Crystallogr., 50 (5), 1376 (2017). DOI: 10.1107/s1600576717011815
- G. Capuzzo, D. Kysylychyn, R. Adhikari, T. Li, B. Faina, A. Tarazaga Marti n-Luengo, A. Bonanni. Sci. Rep., 7 (1), 42697 (2017). DOI: 10.1038/srep42697
- I.B. Karomi, A.T. Zakar, M.S. Al-Ghamdi. IOP Conf. Ser.: Mater. Sci. Eng., 1126 (1), 012004 (2021). DOI: 10.1088/1757-899x/1126/1/012004
- Y. Huang, Z. Pan, R. Wu. J. Appl. Phys., 79 (8), 3827 (1996). DOI: 10.1063/1.361809
- G.R. Hadley. Opt. Lett., 20 (13), 1483 (1995). DOI: 10.1364/OL.20.001483
- D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon. IEEE J. Sel. Top. Quant. Electron., 21 (6), 414 (2015). DOI: 10.1109/jstqe.2015.2412495
- S.A. Blokhin, M.A. Bobrov, A.A. Blokhin, A.P. Vasil'ev, A.G. Kuz'menkov, N.A. Maleev, S.S. Rochas, A.G. Gladyshev, A.V. Babichev, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, V.M. Ustinov. Tech. Phys. Lett. 46, 1257 (2020). DOI: 10.1134/S1063785020120172
- J. Bengtsson, J. Gustavsson, Angstrem Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, M.-C. Amann. Opt. Express, 16 (25), 20789 (2008)
- S.A. Blokhin, M.A. Bobrov, A.A. Blokhin, A.G. Kuzmenkov, N.A. Maleev, V.M. Ustinov, E.S. Kolodeznyi, S.S. Rochas, A.V. Babichev, I.I. Novikov, A.G. Gladyshev, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov. Opt. Spectr. 127 (1), 140 (2019). DOI: 10.1134/S0030400X1907004X
- S. Adachi. J. Appl. Phys. 66 (12), 6030 (1989). DOI: 10.1063/1.343580
- S. Gehrsitz, F.K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, H. Sigg. J. Appl. Phys., 87 (11), 7825 (2000). DOI: 10.1063/1.373462
- T.A. DeTemple, C.M. Herzinger. IEEE J. Quant. Electron., 29 (5), 1246 (1993). DOI: 10.1109/3.236138
- T. Higashi, T. Yamamoto, S. Ogita, M. Kobayashi. IEEE J. Sel. Topics Quant. Electron., 3 (2), 513 (1997). DOI: 10.1109/islc.1996.553742
- N. Tansu, Y.-L. Chang, T. Takeuchi, D.P. Bour, S.W. Corzine, M.R.T. Tan, L.J. Mawst. IEEE J. Quant. Electron., 38 (6), 640 (2002). DOI: 10.1109/jqe.2002.1005415
- T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, F. Koyama, K. Iga. IEICE Trans. Electron., E85- C(1), 71 (2002). DOI: 10.7567/ssdm.1999.le-1-1
- J. Piprek, Y.A. Akulova, D.I. Babic, L.A. Coldren, J.E. Bowers. Appl. Phys. Lett., 72 (15), 1814 (1998). DOI: 10.1063/1.121318
- S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, M. Hammar. IEEE J. Quant. Electron., 40 (5), 453 (2004). DOI: 10.1109/jqe.2004.826421
- H. Riechert, A. Ramakrishnan, G. Steine. Semicond. Sci. Technol., 17 (8), 892--897 (2002). DOI: 10.1088/0268-1242/17/8/318
- H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasukawa. IEEE J. Quant. Electron., 36 (6), 728 (2000). DOI: 10.1109/3.845730
- M. Rosenzweig, M. Mohrle, H. Duser, H. Venghaus. IEEE J. Quant. Electron., 27 (6), 1804 (1991). DOI: 10.1109/3.90008
- N. Tansu, J.-Y. Yeh, L.J. Mawst. IEEE J. Sel. Topics Quant. Electron., 9 (5), 1220 (2003). DOI: 10.1109/jstqe.2003.820911
- C.Y. Liu, S.F. Yoon, W.J. Fan, J.W.R. Teo, S. Yuan. Opt. Express, 13 (22), 9045 (2005). DOI: 10.1364/opex.13.009045
- H. Wada, K. Takemasa, T. Munakata, M. Kobayashi, T. Kamijoh. IEEE J. Sel. Topics Quantum Electron., 5 (3), 420--427 (1999). DOI: 10.1109/2944.788400
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.