Investigation of the characteristics of the InGaAs/InAlGaAs superlattice for 1300 nm range vertical-cavity surface-emitting lasers
Blokhin S.A. 1, Babichev A. V. 2, Gladyshev A. G. 2, Karachinsky L. Ya. 1,2,3, Novikov I. I. 1,2,3, Blokhin A.A. 1, Bobrov M. A. 1, Maleev N.A.1, Kuzmenkov A.G. 4, Nadtochiy A.M. 5, Nevedomskiy V. N. 6, Andryushkin V.V. 2, Rochas S. S. 2, Denisov D. V. 7, Voropaev K. O. 8, Zhumaeva I.O.8, Ustinov V. M. 4, Egorov А. Yu. 3, Bougrov V.E. 2
1Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
3Connector Optics LLC, St. Petersburg, Russia
4Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences, St. Petersburg, Russia
5HSE University, St. Petersburg, Russia
6Ioffe Institute, St. Petersburg, Russia
7St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
8OAO OKB-Planeta, Veliky Novgorod, Russia
Email: blokh@mail.ioffe.ru, a.babichev@mail.ioffe.ru, leonid.karachinsky@connector-optics.com, Innokenty.Novikov@connector-optics.com, bloalex91@yandex.ru, bobrov.mikh@gmail.com, Maleev@beam.ioffe.ru, kuzmenkov@mail.ioffe.ru, anadtochiy@hse.ru, nevedom@mail.ioffe.ru, vvandriushkin@itmo.ru, stanislav_rochas@itmo.ru, dmitry.denisov@connector-optics.com, voropaevko@okbplaneta.ru, ZhumaevaIO@okbplaneta.ru, anton@beam.ioffe.ru, vladislav.bougrov@niuitmo.ru

PDF
X-ray structural analysis and photoluminescence spectroscopy techniques were used to study heterostructures based on InGaAs/InAlGaAs superlattice for active regions of 1300 nm range lasers grown by molecular beam epitaxy. It is shown that the grown heterostructures have a high crystal quality. The perpendicular lattice mismatch of the average crystal lattice constant of the InGaAs/InAlGaAs superlattice with respect to the crystal lattice constant of the InP substrate is estimated at ~+0.01%. An analysis of the photoluminescence spectra made it possible to conclude that the contribution of Auger recombination is insignificant in the studied range of excitation power density. Studies of vertical-cavity surface-emitting lasers with an active region based on the InGaAs/InAlGaAs superlattice made it possible to estimate the gain coefficient at a level of 650 cm-1 for the standard logarithmic approximation of the dependence of the gain on the current density. The transparency current density of the laser was 400-630 A/cm2, which is comparable to the record low values for the case of highly strained InGaAs-GaAs and InGaAsN-GaAs quantum wells in the spectral ranges of 1300 nm, respectively. Keywords: superlattice, vertical-cavity surface-emitting laser, optical gain.
  1. M.V.R. Murty, J. Wang, A.L. Harren, A.-N. Cheng, D.W. Dolfi, Z.-W. Feng, A. Sridhara, S.T. Joyo, J. Chu, L.M. Giovane. IEEE Photonics Technol. Lett., 33 (16), 812 (2021). DOI: 10.1109/lpt.2021.3069146
  2. Z. Ruan, Y. Zhu, P. Chen, Y. Shi, S. He, X. Cai, L. Liu. J. Lightwave Technol., 38 (18), 5100 2020. DOI:10.1109/jlt.2020.2999526
  3. M. G ebski, D. Dontsova, N. Haghighi, K. Nunna, R. Yanka, A. Johnson, R. Pelzel, J.A. Lott. OSA Continuum, 3 (7), 1952 (2020). DOI: 10.1364/osac.396242
  4. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Springer Series in Optical Sciences, ed. R. Michalzik (Springer, Berlin, Heidelberg, 2013) DOI: 10.1007/978-3-642-24986-0
  5. J. Minch, S.H. Park, T. Keating, S.L. Chuang. IEEE J. Quant. Electron., 35 (5), 771 (1999). DOI: 10.1109/3.760325
  6. J.C.L. Yong, J.M. Rorison, I.H. White. IEEE J. Quant. Electron., 38 (12), 1553 (2002). DOI: 10.1109/jqe.2002.805100
  7. Y.-K. Kuo, S.-H. Yen, M.-W. Yao, M.-L. Chen, B.-T. Liou. Opt. Commun., 275 (1), 156 (2007). DOI: 10.1016/j.optcom.2007.02.025
  8. M. Muller, C. Grasse, M.C. Amann. In Proc. 2012 14th International Conference on Transparent Optical Networks (ICTON) (IEEE, Coventry, UK, 2012) DOI: 10.1109/icton.2012.6254394
  9. S. Spiga, M.C. Amann. "High-Speed InP-Based Long-Wavelength VCSELs," Green Photonics and Electronics, ed. G. Eisenstein, D. Bimberg. (Springer, Cham, 2017), p. 17-35. DOI: 10.1007/978-3-319-67002-7_2
  10. C. Grasse, M. Mueller, T. Gruendl, G. Boehm, E. Roenneberg, P. Wiecha, J. Rosskopf, M. Ortsiefer, R. Meyer, M.-C. Amann. J. Cryst. Growth, 370, 217 (2013). DOI: 10.1016/j.jcrysgro.2012.06.051
  11. E.S. Kolodeznyi, S.S. Rochas, A.S. Kurochkin, A.V. Babichev, I.I. Novikov, A.G. Gladyshev, L.Y. Karachinskii, D.V. Denisov, Y.K. Bobretsova, A.A. Klimov, S.A. Blokhin, K.O. Voropaev, A.S. Ionov. Opt. Spectr., 125 (2), 238 (2018). DOI: 10.1134/s0030400x18080143
  12. M. Muller, P. Debernardi, C. Grasse, T. Grundl, M.-C. Amann. IEEE Photonics Technol. Lett., 25 (2), 140 (2013). DOI: 10.1109/lpt.2012.2229975
  13. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho. Science, 264 (5158), 553 (1994). DOI: 10.1126/science.264.5158.553
  14. L.Y. Karachinsky, I.I. Novikov, A.V. Babichev, A.G. Gladyshev, E.S. Kolodeznyi, S.S. Rochas, A.S. Kurochkin, Y.K. Bobretsova, A.A. Klimov, D.V. Denisov, K.O. Voropaev, A.S. Ionov, V.E. Bougrov, A.Y. Egorov. Opt. Spectr., 127 (6), 1053 (2019). DOI: 10.1134/s0030400x19120099
  15. C.A. Wang, B. Schwarz, D.F. Siriani, L.J. Missaggia, M.K. Connors, T.S. Mansuripur, D.R. Calawa, D. McNulty, M. Nickerson, J.P. Donnelly, K. Creedon, F. Capasso. IEEE J. Sel. Top. Quant. Electron., 23 (6), 1 (2017). DOI: 10.1109/jstqe.2017.2677899
  16. B. Schwarz, C.A. Wang, L. Missaggia, T.S. Mansuripur, P. Chevalier, M.K. Connors, D. McNulty, J. Cederberg, G. Strasser, F. Capasso. ACS Photonics, 4 (5), 1225 (2017). DOI: 10.1021/acsphotonics.7b00133
  17. S.S. Rochas, I.I. Novikov, A.G. Gladyshev, E.S. Kolodeznyi, A.V. Babichev, V.V. Andryushkin, V.N. Nevedomskii, D.V. Denisov, L.Ya. Karachinsky, A.Yu. Egorov, V.E. Bougrov. Tech. Phys. Lett., 46 (11),1128 (2020). DOI: 10.1134/S1063785020110267
  18. G.M. Yang, M.H. MacDugal, V. Pudikov, P.D. Dapkus. IEEE Photon. Technol. Lett., 7 (11), 1228 (1995). DOI: 10.1109/68.473454
  19. S.A. Blokhin, S.N. Nevedomsky, M.A. Bobrov, N.A. Maleev, A.A. Blokhin, A.G. Kuzmenkov, A.P. Vasyl'ev, S.S. Rohas, A.V. Babichev, A.G. Gladyshev, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, V.M. Ustinov. Semiconductors, 54, 1276 (2020). DOI: 10.1134/S1063782620100048
  20. S. Blokhin, A. Babichev, A. Gladyshev, L. Karachinsky, I.Novikov, A. Blokhin, S. Rochas, D. Denisov, K. Voropaev, A. Ionov, N. Ledentsov, A. Egorov. Electron. Lett., (just accepted) (2021). DOI: 10.1049/ell2.12232
  21. D. Pierscinska, P. Gutowski, G. Ha das, A. Kolek, I. Sankowska, J. Grzonka, J. Mizera, K. Pier sinski, M. Bugajski. Semicond. Sci. Technol., 33 (3), 035006 (2018). DOI: 10.1088/1361-6641/aaa91a
  22. N. Volet,Optical Mode Control in Long-Wavelength Vertical-Cavity Surface-Emitting Lasers. (Diss. Ph. D. thesis, 2014), DOI: 10.5075/epfl-thesis-6064
  23. A.V. Babichev, L.Y. Karachinsky, I.I. Novikov, A.G. Gladyshev, S.A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J.P. Turkiewicz, K.O. Voropaev, A.S. Ionov, M. Agustin, N.N. Ledentsov, A.Y. Egorov. IEEE J. Quant. Electron., 53 (6), 1 (2017). DOI: 10.1109/jqe.2017.2752700
  24. S. Spiga, D. Schoke, A. Andrejew, G. Boehm, M.-C. Amann. J. Lightwave Technol., 35 (15), 3130 (2017). DOI: 10.1109/jlt.2017.2660444
  25. I. Sankowska, P. Gutowski, A. Jasik, K. Czuba, J. Dabrowski, M. Bugajski. J. Appl. Crystallogr., 50 (5), 1376 (2017). DOI: 10.1107/s1600576717011815
  26. G. Capuzzo, D. Kysylychyn, R. Adhikari, T. Li, B. Faina, A. Tarazaga Marti n-Luengo, A. Bonanni. Sci. Rep., 7 (1), 42697 (2017). DOI: 10.1038/srep42697
  27. I.B. Karomi, A.T. Zakar, M.S. Al-Ghamdi. IOP Conf. Ser.: Mater. Sci. Eng., 1126 (1), 012004 (2021). DOI: 10.1088/1757-899x/1126/1/012004
  28. Y. Huang, Z. Pan, R. Wu. J. Appl. Phys., 79 (8), 3827 (1996). DOI: 10.1063/1.361809
  29. G.R. Hadley. Opt. Lett., 20 (13), 1483 (1995). DOI: 10.1364/OL.20.001483
  30. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon. IEEE J. Sel. Top. Quant. Electron., 21 (6), 414 (2015). DOI: 10.1109/jstqe.2015.2412495
  31. S.A. Blokhin, M.A. Bobrov, A.A. Blokhin, A.P. Vasil'ev, A.G. Kuz'menkov, N.A. Maleev, S.S. Rochas, A.G. Gladyshev, A.V. Babichev, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, V.M. Ustinov. Tech. Phys. Lett. 46, 1257 (2020). DOI: 10.1134/S1063785020120172
  32. J. Bengtsson, J. Gustavsson, Angstrem Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, M.-C. Amann. Opt. Express, 16 (25), 20789 (2008)
  33. S.A. Blokhin, M.A. Bobrov, A.A. Blokhin, A.G. Kuzmenkov, N.A. Maleev, V.M. Ustinov, E.S. Kolodeznyi, S.S. Rochas, A.V. Babichev, I.I. Novikov, A.G. Gladyshev, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov. Opt. Spectr. 127 (1), 140 (2019). DOI: 10.1134/S0030400X1907004X
  34. S. Adachi. J. Appl. Phys. 66 (12), 6030 (1989). DOI: 10.1063/1.343580
  35. S. Gehrsitz, F.K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, H. Sigg. J. Appl. Phys., 87 (11), 7825 (2000). DOI: 10.1063/1.373462
  36. T.A. DeTemple, C.M. Herzinger. IEEE J. Quant. Electron., 29 (5), 1246 (1993). DOI: 10.1109/3.236138
  37. T. Higashi, T. Yamamoto, S. Ogita, M. Kobayashi. IEEE J. Sel. Topics Quant. Electron., 3 (2), 513 (1997). DOI: 10.1109/islc.1996.553742
  38. N. Tansu, Y.-L. Chang, T. Takeuchi, D.P. Bour, S.W. Corzine, M.R.T. Tan, L.J. Mawst. IEEE J. Quant. Electron., 38 (6), 640 (2002). DOI: 10.1109/jqe.2002.1005415
  39. T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, F. Koyama, K. Iga. IEICE Trans. Electron., E85- C(1), 71 (2002). DOI: 10.7567/ssdm.1999.le-1-1
  40. J. Piprek, Y.A. Akulova, D.I. Babic, L.A. Coldren, J.E. Bowers. Appl. Phys. Lett., 72 (15), 1814 (1998). DOI: 10.1063/1.121318
  41. S. Mogg, N. Chitica, U. Christiansson, R. Schatz, P. Sundgren, C. Asplund, M. Hammar. IEEE J. Quant. Electron., 40 (5), 453 (2004). DOI: 10.1109/jqe.2004.826421
  42. H. Riechert, A. Ramakrishnan, G. Steine. Semicond. Sci. Technol., 17 (8), 892--897 (2002). DOI: 10.1088/0268-1242/17/8/318
  43. H. Shimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, A. Kasukawa. IEEE J. Quant. Electron., 36 (6), 728 (2000). DOI: 10.1109/3.845730
  44. M. Rosenzweig, M. Mohrle, H. Duser, H. Venghaus. IEEE J. Quant. Electron., 27 (6), 1804 (1991). DOI: 10.1109/3.90008
  45. N. Tansu, J.-Y. Yeh, L.J. Mawst. IEEE J. Sel. Topics Quant. Electron., 9 (5), 1220 (2003). DOI: 10.1109/jstqe.2003.820911
  46. C.Y. Liu, S.F. Yoon, W.J. Fan, J.W.R. Teo, S. Yuan. Opt. Express, 13 (22), 9045 (2005). DOI: 10.1364/opex.13.009045
  47. H. Wada, K. Takemasa, T. Munakata, M. Kobayashi, T. Kamijoh. IEEE J. Sel. Topics Quantum Electron., 5 (3), 420--427 (1999). DOI: 10.1109/2944.788400

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru