Modified theory of coupled waves and a numerical method for the analysis of Bragg mirrors with an arbitrary refractive index profil
Masterov R. A.1, Karpov S. Yu.1
1Soft-Impact Ltd, Saint-Petersburg, Russia
Email: roman.masterov@str-soft.com

PDF
An analytical and effective numerical approach to the analysis of the optical characteristics of Bragg mirrors with an arbitrary refractive index profile is developed. Analytical expressions obtained using the modified theory of coupled waves for the coefficients of reflection / transmission of light from through the BM with high accuracy predict its main characteristics at both low and high contrast of the refractive index. The hybrid numerical method includes the numerical calculation of the transfer matrix for one period of the knowledge base and its analytical multiplication for an arbitrary number of periods. The developed methods are applied to the analysis of the properties of practically important BMs made on the basis of sprayed pairs of Ta2O5/SiO2 dielectrics, Group III nitrides and arsenides. The characteristics of the knowledge base with smooth (gradient) interfaces are considered in detail. Keywords: vertically emitting lasers, reflection coefficient, reflection bandwidth.
  1. K. Iga. Japanese J. Appl. Phys., 57 (8S2), 08PA01 (2018). DOI: 10.7567/JJAP.57.08PA01
  2. K.J. Ebeling, R. Michalzik. VCSEL Technology for Imaging and Sensor Systems Applications. In: 22nd Microoptics Conf. IEEE, (2017), p. 20-21. DOI: 10.23919/MOC.2017.8244477
  3. E. Watanabe, K. Kodate. Multi-Light Source Compact Optical Parallel Correlator (MLCOPaC) for Facial Recognition Using VCSEL Array. In: 19th Congress of the International Commission for Optics: Optics for the Quality of Life International Society for Optics and Photonics, (2003), p. 208-209. DOI: 10.1117/12.523842
  4. E. Watanabe, N. Takeda, K. Kodate. Fabrication and Evaluation of a Facial Recognition System Based on PJTC Using Two-Dimensional VCSEL Array Module. In: Practical Holography XVII and Holographic Materials IX International Society for Optics and Photonics, (2003), v. 5005, p. 345-356. DOI: 10.1117/12.473886
  5. S. McEldowney. U.S. Patent N 8,320,621. Washington, DC: U.S. Patent and Trademark Office (2012)
  6. D.K. Serkland, G.M. Peake, K.M. Geib, R.Lutwak, R.M. Garvey, M. Varghese, M. Mescher. VCSELs for Atomic Clocks. In Vertical-Cavity Surface-Emitting Lasers X. International Society for Optics and Photonics, (2006), v. 6132, p. 613208. DOI: 10.1117/12.647095
  7. E. Thrush, O. Levi, W. Ha, G. Carey, L.J. Cook, J. Deich, S.J. Smith, W.E. Moerner, J.S. Harris. IEEE J. Quant. Electron., 40 (5), 491 (2004). DOI: 10.1109/JQE.2004.826440
  8. G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M.C Amann, F. Winter. Appl. Phys. B, 76 (5), 603 (2003). DOI: 10.1007/s00340-003-1102-1
  9. A. Lipson. U.S. Patent N 9,831,630. Washington, DC: U.S. Patent and Trademark Office (2017)
  10. K. Iga. Vertical-Cavity Surface-Emitting Laser: Introduction and Review. In Vertical-Cavity Surface-Emitting Laser Devices (Springer, Berlin, Heidelberg, 2003), DOI: 10.1007/978-3-662-05263-1_1
  11. H. Soda, K.I. Iga, C. Kitahara, Y. Suematsu. Jpn. J. Appl. Phys., 18 (12), 2329 (1979). DOI: 10.1143/JJAP.18.2329
  12. M.H. Crawford. OSA Trends in Optics and Photonics Series, 15, 104 (1998).
  13. T. Sakaguchi, T. Shirasawa, N. Mochida, A. Inoue, M. Iwata, T. Honda, F. Koyama, K. Iga. Highly reflective AlN-GaN and ZrO/sub 2/-SiO/sub 2/multilayer Reflectors and Their Applications for InGaN-GaN Surface Emitting Laser Structures. In Conf. Proceedings. LEOS'98. 11th Annual Meeting. IEEE Lasers and Electro-Optics Society 1998 Annual Meeting. IEEE, (1998), v. 1, p. 34-35. DOI: 10.1109/LEOS.1998.737719
  14. D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, H. Matsumura, T. Mukai. Appl. Phys. Express, 4 (7), 072103 (2011). DOI: 072103.10.1143/APEX.4.072103
  15. A.V. Nurmikko, J. Han. Progress in Blue and Near-Ultraviolet Vertical-Cavity Emitters: A status report. In: Vertical-Cavity Surface-Emitting Laser Devices. (Springer, Berlin, Heidelberg, 2003), p. 343. DOI: 10.1007/978-3-662-05263-1_11
  16. S. Arafin, H. Jung. Recent Progress on GaSb-Based Electrically-Pumped VCSELs for Wavelengths Above 4 μm. In Image Sensing Technologies: Materials, Devices, Systems, and Applications VI, (2019), v. 10980, p. 109800H. DOI: 10.1117/12.2522418
  17. E.F. Schubert, L.W. Tu, G.J. Zydzik, R.F. Kopf, A. Benvenuti, M.R. Pinto. Appl. Phys. Let., 60 (4), 466 (1992). DOI: 10.1063/1.106636
  18. M.G. Peters, B.J. Thibeault, D.B. Young, J.W. Scott, F.H. Peters, A.C. Gossard, L.A. Coldren. Appl. Phys. Lett., 63 (25), 3411 (1993). DOI: 10.1063/1.110156
  19. A. Mutig. Physical Processes in Lasers and VCSEL Design. In: High Speed VCSELs for Optical Interconnects (Springer, Berlin, Heidelberg, 2011)
  20. S.A. Chalmers, K.L. Lear, K.P. Killeen. Appl. Phys. Lett., 62 (14), 1585 (1993). DOI: 10.1063/1.109608
  21. G. Brummer, D. Nothern, A.Y. Nikiforov, T.D. Moustakas. Appl. Phys. Lett., 106 (22), 221107 (2015). DOI: 10.1063/1.4922215
  22. H. Morko c. Handbook of Nitride Semiconductors and Devices, GaN-Based Optical and Electronic Devices. (Wiley-VCH, Weinheim: Chichester, 2008), v. 53
  23. S. Yoshida, K. Ikeyama, T. Yasuda, T. Furuta, T. Takeuchi, M. Iwaya, S. Kamiyama, I. Akasaki. Jpn. J. Appl. Phys., 55 (5S), 05FD10 (2016). DOI: 10.7567/JJAP.55.05FD10
  24. W. Muranaga, T. Akagi, R. Fuwa, S. Yoshida, J. Ogimoto, Y. Akatsuka, S. Iwayama, T. Takeuchi, S. Kamiyama, M. Iwaya, I. Akasaki. Jpn. J. Appl. Phys., 58 (SC), SCCC01 (2019). DOI: 10.7567/1347-4065/ab1253
  25. T. Yasuda, T. Takeuchi, M. Iwaya, S. Kamiyama, I. Akasaki, H. Amano. Appl. Phys. Express, 10 (2), 025502 (2017). DOI: 10.7567/APEX.10.025502
  26. C. Zhang, R. ElAfandy, J. Han. Appl. Sciences, 9 (8), 1593 (2019). DOI: 10.3390/app9081593
  27. J. Chang, D. Chen, L. Yang, Y. Liu, K. Dong, H. Lu, R. Zhang, Y. Zheng. Scientific Reports, 6 (1), 1 (2016). DOI: 10.1038/srep29571
  28. H. Kogelnik, C.V. Shank. J. Appl. Phys., 43 (5), 2327 (1972). DOI: 10.1063/1.1661499
  29. S.Yu. Karpov, S.N. Stolyarov. Phys. Usp. 36 (1), 1 (1993). DOI: 10.1070/PU1993v036n01ABEH002061
  30. N.N. Martynov, S.N. Stolyarov. Soviet J. Quant. Electron., 8 (8), 1056 (1978). DOI: 10.1070/QE1978v008n08ABEH010615
  31. M. Born, E. Volf. Osnovy optiki (Nauka, Gl. red. Fizmatlit, 1973) (in Russian)
  32. J. Dorsaz, J.F. Carlin, S. Gradecak, M. Ilegems. J. Appl. Phys., 97 (8), 084505 (2005). DOI: 10.1063/1.1872197
  33. R. Butte, J.F. Carlin, E. Feltin, M. Gonschorek, S. Nicolay, G. Christmann, D. Simeonov, A. Castiglia, J. Dorsaz, H.J. Buehlmann, S. Christopoulos, G. Baldassarri Hoger von Hogersthal, A.J.D. Grundy, M. Mosca, C. Pinquier, M.A. Py, F. Demangeot, J. Frandon, P.G. Lagoudakis, J.J. Baumberg, N. Grandjean. J. Phys. D: Appl. Phys., 40 (20), 6328 (2007). DOI: 10.1088/0022-3727/40/20/S16
  34. R. Goldhahn, C. Buchheim, P. Schley, A.T. Winzer, H. Wenzel. Optical Constants of Bulk Nitrides. In Nitride Semiconductor Devices: Principles and Simulation (Wiley Weinheim, Germany, 2007)
  35. ("Refractive index database") [Online source]. URL: https://refractiveindex.info (date of application: 01.05.2019)
  36. C.C. Kao, Y.C. Peng, H.H. Yao, J.Y. Tsai, Y.H. Chang, J.T. Chu, H.W. Huang, T.T. Kao, T.C. Lu, H.C. Kuo, S.C. Wang, C.F. Lin. Appl. Phys. Lett., 87 (8), 081105 (2005). DOI: 10.1063/1.2032598
  37. W.Y. Lin, D.S. Wuu, S.C. Huang, R.H. Horng. IEEE Transactions on Electron Devices, 58 (1), 173 (2010). DOI: 10.1109/TED.2010.2084579

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru