Formation of a fine-grained Si1-xGex thermoelectric by spark plasma sintering
Dorokhin M. V.1, Boldin M.S.1, Uskova E. A.1, Boryakov A. V.2, Demina P. B. 1, Erofeeva I. V. 1, Zdoroveyshchev A. V.1, Kotomina V. E.1, Кuzetsov Yu. M.1, Lantsev E. A.1, Popov A. A.1, Trushin V. N.1
1Research Institute for Physics and Technology, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
2Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
Email: dorokhin@nifti.unn.ru, boldin@nifti.unn.ru, irfeya@mail.ru, boryakov@phys.unn.ru, demina@phys.unn.ru, zdorovei@gmail.com, kotominav@list.ru, yurakz94@list.ru, elancev@nifti.unn.ru, popov@nifti.unn.ru, trushin@nifti.unn.ru

PDF
The kinetics of diffusion processes occurring during the formation of polycrystalline Si1-xGex nanostructures (x=0.20, 0.35) by spark plasma sintering in the temperature range 20-1200oC was studied for the first time. A mechanism for the formation of a SiGe solid solution is proposed as a result of a comprehensive study of the microstructure and phase composition of samples with particle sizes from 150 nm to 100 μm, together with the analysis of experimental sintering maps. It is based on the phenomenon of mutual diffusion of Si and Ge atoms that occurs during the entire sintering process. For the selected sintering modes, the grain size of the formed SiGe corresponds to the size of the initial powder particles. Keywords: spark plasma sintering, solid solution SiGe, thermoelectric characteristics, figure of merit ZT.
  1. Bo Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z. Ren. Nano Lett., 12, 2077 (2012)
  2. L.P. Bulat, L.V. Bochkov, I.A. Nefedova, R. Akhiska. Scientific and Technical Bulletin of Information Technology, Mechanics and Optics, 4 (92), 48 (2014)
  3. N. Mingo, D. Hauser, N.P. Kobayashi M. Plissonnier, A. Shakouri. Nano Lett., 9, 11 (2009)
  4. D.A. Ovsyannikov, M.Y. Popov, S.G. Buga, A.N. Kirichenko, S.A. Tarelkin, V.V. Aksenenenkov, E.V. Tatyanin, V.D. Blank. FTT, 57 (3), 590 (2015)
  5. I.V. Erofeeva, M.V. Dorokhin, A.V. Zdoroveischev, Y.M. Kuznetsov, A.A. Popov, E.A. Lantsev, A.V.Boryakov, V.E. Kotomina. FTP, 52 (12), 1455 (2018)
  6. M.V. Dorokhin, P.B. Demina, I.V. Erofeeva, A.V. Zdoroveischev, Y.M. Kuznetsov, M.S. Boldin, A.A. Popov, E.A. Lantsev, A.V. Boryakov. FTP, 53 (9), 1182 (2019)
  7. M.V. Dorokhin, P.B. Demina, I.V. Erofeeva. A.V. Zdoroveischev, Y.M. Kuznetsov, E.A. Uskova, M.S. Boldin, E.A. Lantsev, A.A. Popov, V.N. Trushin. Materials of XXIV Int. Symp. " Nanophysics and Nanoelectronics" (Nizhny Novgorod, Russia, 2020), vol. 2, p. 551
  8. V.A. Kulbachinsky. Russian Nanotechnology, 14 (7-8), 30 (2019). DOI: 10.21517/1992-7223-2019-7-8-30-42
  9. M.G. Kekua, E.V. Khutsishvili. Solid solutions of the germanium-silicon semiconductor system (Metsniereba, Tbilisi, 1985)
  10. J. Han, T. Jiang, J. Li, Y. Xiang. Method for preparing SiGe thermoelectric. CN 108258110 A (China, 2018)
  11. M. Tokita. In Handbook: Advanced Ceramics (Academic Press, 2013), Chapter 11.2.3, p. 1149
  12. H. Stohr, W. Klemm. Anorgang. Algem. Chem., 241 (4), 305 (1939)
  13. P.K. Gogna, J.P. Fleurial, S.K. Bux, R.B. Kaner, R.G. Blair, H. Lee, G. Chen, M.S. Dresselhaus. J. Adv. Functional Mater., 19, 2445 (2009)
  14. M.S. Boldin. Dissertation. kinetics of electropulse plasma sintering of aluminum oxide ceramics Candidate of Physical and Mathematical Sciences (Nizhny Novgorod, N.I. Lobachevsky NNSU, 2019)
  15. V.N. Chuvildeev, M.S. Boldin, Ya.G. Dyatlova, V.I. Rumyantsev, S.S. Ordanyan. Journal of Inorganic Chemistry, 60(8), 1088 (2015)
  16. F. Schaffler, in Properties of advanced semiconductor materials GaN, AlN, InN, BN, SiC, SiGe (John Wiley \& Sons, Inc., NY., 2001), p. 149
  17. C. Gayner, K.K. Kar. Prog. Mat. Scienc, 83, 330 (2016)
  18. R.G. Rodes. imperfections and active centers in semiconductors, translated from Eng. edited by S.S. Gorelik. (Metallurgiya, M., 1968)
  19. B.A. Kalin. Physical Materials Science, under the general editorship of B.A. Kalin. Vol 4. E.G. Grigoryev, Y.A. Perlovich, G.I. Solovyov Physical Bases of Strength. Radiation physics of solids. Computer modelling (MEPhI, Moscow, 2008)
  20. Ya.E. Geguzin. Sintering Physics (Nauka, M., 1984)
  21. Yu. Kuznetsov, M. Bastrakova, M. Dorokhin, I. Erofeeva, P. Demina, E. Uskova, A. Popov, A. Boryakov. AIP Advances, 10, 065219 (2020) DOI:10.1063/5.0011740
  22. H.H. Silvestri, H. Bracht, J. Lundsgaard Hansen, A. Nylandsted Larsen, E.E. Haller. Semicond. Sci. Tech., 21, 758 (2006). http:/doi.org/10.1088/0268-1242/21/6/008 V.A. Ivensen. Sintering phenomenology and some questions of theory (Metallurgy, M., 1985)
  23. W.J. Huppmann. In: Kuczynski G.C. (eds) Sintering and Catalysis. Materials Science Research (Springer, Boston, 1975), v. 10, p. 312.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru