Investigation of the effect of oxygen partial pressure on the phase composition of copper oxide nanoparticles by vacuum arc synthesis
Ushakov A. V. 1,2, Karpov I. V. 1,2, Fedorov L. Yu. 1,2, Goncharova E. A. 1,2, Brungardt M. V. 1, Дёмин В. Г.1
1Siberian Federal University, Krasnoyarsk, Russia
2Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
Email: sfu-unesco@mail.ru

PDF
Copper oxide nanoparticles were obtained in the plasma of a low-pressure arc discharge. The effect of the partial pressure of oxygen (10-40%) on the physical properties of the deposited nanoparticles has been studied. X-ray diffraction analysis shows that the cubic structure of Cu2O changes to monoclinic CuO with increasing O2 pressure. The results of Raman spectroscopy further confirmed the phase variations of copper-based oxide nanoparticles. X-ray photoelectron spectroscopy confirmed the change in the binding energy in the oxidation state of nanoparticles. The optical band gap of the deposited Cu2O is 2.12 eV, while that of CuO is 1.79-1.82 eV. Keywords: vacuum arc, oxides, nanoparticles, plasma-chemical reactions.
  1. C.M. Niemeyer. Angew. Chem. Int. Ed., 40 (22), 4128 (2010). DOI: 10.1002/1521-3773(20011119)40:22
  2. W. Ma, L. Xu, A.F. de Moura, X. Wu, H. Kuang, C. Xu, N.A. Kotov. Chemical Rev., 117 (12), 8041 (2017). DOI: 10.1021/acs.chemrev.6b00755
  3. L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu. Particuology, 30, 1 (2017). DOI: 10.1016/j.partic.2016.06.001
  4. W. Xiang, Y. Liu, J. Yao, R. Sun. Physica E: Low-dimensional Syst., Nanostruct., 97, 363 (2018). DOI: 10.1016/j.physe.2017.12.016
  5. S.P. Jahromi, A. Pandikumar, B.T. Goh, Y.S. Lim, W.J. Basirun, H.N. Lim, N.M. Huang. RSC Adv., 5 (18), 14010 (2015). DOI: 10.1039/C4RA16776G
  6. P. Lignier, R. Bellabarba, R.P.R. Tooze. Chem. Soc. Rev., 41, 1708 (2012). DOI: 10.1039/C1CS15223H
  7. Y. Abdu, A.O. Musa. J. Pure. Appl. Sci., 2, 8 (2009)
  8. K.J. Choi, H.W. Jang. Sensors (Basel, Switzerland, 2010), v. 10, p. 4083. DOI: 10.3390/s100404083
  9. M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma. Chem. Rev., 116, 3722 (2016). DOI: 10.1021/acs.chemrev.5b00482
  10. O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, A. Kahru. Archives of Toxicology, 87 (7), 1181 (2013). DOI: 10.1007/s00204-013-1079-4
  11. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang. Progress Mater. Sci., 60, 208 (2014). DOI: 10.1016/j.pmatsci.2013.09.003
  12. F. Gao, X.J. Liu, J.S. Zhang, M.Z. Song, N. Li. J. Appl. Phys., 111, 084507 (2012). DOI: 10.1063/1.4704382
  13. Q. Yang, Z. GuO, X.H. Zhou, J.T. Zou, S.H. Liang. Mater. Lett., 153, 128 (2015). DOI: 10.1016/j.matlet.2015.04.045
  14. A.H. Jayatissa, K. Guo, A.C. Jayasuriya. Appl. Surf. Sci., 255, 9474 (2009). DOI: 10.1016/j.apsusc.2009.07.072
  15. I.V. Karpov, A.V. Ushakov, A.A. Lepeshev, L.Yu. Fedorov. Tech. Phys., 62 (1), 168 (2017). DOI: 10.1134/S106378421701011X
  16. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev. J. Superconductivity and Novel Magnetism, 30 (12), 3351 (2017). DOI: 10.1007/s10948-017-4311-2
  17. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, L.Yu. Fedorov. Int. J. Nanosci., 16 (4), 1750001 (2017). DOI: 10.1142/S0219581X17500016
  18. I.V. Karpov, A.V. Ushakov, V.G. Demin, A.A. Shaihadinov, A.I. Demchenko, L.Yu. Fedorov, E.A. Goncharova, A.K. Abkaryan. J. Magnetism and Magnetic Materials, 490, 165492 (2019). DOI: 10.1016/j.jmmm.2019.165492
  19. A.V. Uschakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov. Vacuum, 133, 25 (2016). DOI: 10.1016/j.vacuum.2016.08.007
  20. X. Hu, F. Gao, Y. Xiang, H. Wu, X. Zheng, J. Jiang, J. Li, H. Yang, S. Liu. Mater. Lett., 176, 282 (2016). DOI: 10.1016/j.matlet.2016.04.055
  21. S. Cui, E.C. Mattson, G. Lu, C. Hirschmugl, M. Gajdardziska-Josifovska, J. Chen. J. Nanopart Res., 14, 744 (2012). DOI: 10.1007/s11051-012-0744-5
  22. S. Serio, M.E. Melo Jorge, M.J.P. Maneira, Y. Nunes. Mater. Chem. Phys., 126, 73 (2011). DOI: 10.1016/j.matchemphys.2010.12.008
  23. E. Turgut, O. Coban, S. Sari tas, S. Tuzemen, M. Yi ldi ri m, E. Gur. Appl. Surf. Sci., 435, 880 (2018). DOI: 10.1016/j.apsusc.2017.11.133
  24. Y. Alajlani, F. Placido, A. Barlow, H.O. Chu, S. Song, S.U. Rahman., R. De Bold, D. Gibson. Vacuum, 144, 217 (2017). DOI: 10.1016/j.vacuum.2017.08.005
  25. G. Murdoch, M. Greiner, M. Helander, Z. Wang, Z. Lu. Appl. Phys. Lett., 93 (8), 318 (2008). DOI: 10.1063/1.2966140
  26. T. Gaewdang, N. Wongcharoen. IOP Conf. Ser.: Mater. Sci. Eng., 211, 012025 (2017). DOI: 10.1088/1757-899X/211/1/012025
  27. A. Jilani, M.S. Abdel-Wahab, M.H.D. Othman, V. Sajith, A. Alsharie. Optik, 144, 207 (2017). DOI: 10.1016/j.ijleo.2017.06.075
  28. S. Cho. Met. Mater. Int., 19 (6) 1327 (2013). DOI: 10.1007/s12540-013-6030-y
  29. D.A. Kudryashov, A.S. Gudovskikh, A.V. Babichev, A.V. Filimonov, A.M. Mozharov, V.F. Agekyan, E.V. Borisov, A.Yu. Serov, N.G. Filosofov. Semiconductors, 51 (1), 110 (2017). DOI: 10.1134/S1063782617010110
  30. A.B. Gordienko1, Yu.N. Zhuravlev, D.G. Fedorov. Phys. Solid State, 49 (2), 223 (2007). DOI: 10.1134/S1063783407020072
  31. D. Chauhan, V.R. Satsangi, S. Dass, R. Shrivastav. Bull. Mater. Sci., 29 (7), 709 (2007)
  32. B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P.J. Klar, Th. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Blasing, A. Krost, S. Shokovets, C. Muller, C. Ronning. Phys. Stat. Sol. B, 249 (8), 1487 (2012). DOI: 10.1002/pssb.201248128
  33. M. Heinemann, B. Eifert, C. Heiliger. Phys. Rev. B, 87, 115111 (2013). DOI: 10.1103/PhysRevB.87.115111
  34. M.T.S. Nair, L. Guerrero, O.L. Arenas, P.K. Nair. Appl. Surf. Sci., 150 (1-4), 143 (1999). DOI: 10.1016/S0169-4332(99)00239-1
  35. S.C. Ray. Solar Energy Materials and Solar Cells, 68 (3-4), 307 (2001). DOI: 10.1016/S0927-0248(00)00364-0
  36. A.Y. Oral, E. Men sur, M.H. Aslan, E. Ba saran. Mater. Chem. Phys., 83 (1), 140 (2004). DOI: 10.1016/j.matchemphys.2003.09.015

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru