Investigation of the effect of oxygen partial pressure on the phase composition of copper oxide nanoparticles by vacuum arc synthesis
Ushakov A. V.
1,2, Karpov I. V.
1,2, Fedorov L. Yu.
1,2, Goncharova E. A.
1,2, Brungardt M. V.
1, Дёмин В. Г.
11Siberian Federal University, Krasnoyarsk, Russia
2Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
Email: sfu-unesco@mail.ru
Copper oxide nanoparticles were obtained in the plasma of a low-pressure arc discharge. The effect of the partial pressure of oxygen (10-40%) on the physical properties of the deposited nanoparticles has been studied. X-ray diffraction analysis shows that the cubic structure of Cu2O changes to monoclinic CuO with increasing O2 pressure. The results of Raman spectroscopy further confirmed the phase variations of copper-based oxide nanoparticles. X-ray photoelectron spectroscopy confirmed the change in the binding energy in the oxidation state of nanoparticles. The optical band gap of the deposited Cu2O is 2.12 eV, while that of CuO is 1.79-1.82 eV. Keywords: vacuum arc, oxides, nanoparticles, plasma-chemical reactions.
- C.M. Niemeyer. Angew. Chem. Int. Ed., 40 (22), 4128 (2010). DOI: 10.1002/1521-3773(20011119)40:22
- W. Ma, L. Xu, A.F. de Moura, X. Wu, H. Kuang, C. Xu, N.A. Kotov. Chemical Rev., 117 (12), 8041 (2017). DOI: 10.1021/acs.chemrev.6b00755
- L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu. Particuology, 30, 1 (2017). DOI: 10.1016/j.partic.2016.06.001
- W. Xiang, Y. Liu, J. Yao, R. Sun. Physica E: Low-dimensional Syst., Nanostruct., 97, 363 (2018). DOI: 10.1016/j.physe.2017.12.016
- S.P. Jahromi, A. Pandikumar, B.T. Goh, Y.S. Lim, W.J. Basirun, H.N. Lim, N.M. Huang. RSC Adv., 5 (18), 14010 (2015). DOI: 10.1039/C4RA16776G
- P. Lignier, R. Bellabarba, R.P.R. Tooze. Chem. Soc. Rev., 41, 1708 (2012). DOI: 10.1039/C1CS15223H
- Y. Abdu, A.O. Musa. J. Pure. Appl. Sci., 2, 8 (2009)
- K.J. Choi, H.W. Jang. Sensors (Basel, Switzerland, 2010), v. 10, p. 4083. DOI: 10.3390/s100404083
- M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma. Chem. Rev., 116, 3722 (2016). DOI: 10.1021/acs.chemrev.5b00482
- O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, A. Kahru. Archives of Toxicology, 87 (7), 1181 (2013). DOI: 10.1007/s00204-013-1079-4
- Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang. Progress Mater. Sci., 60, 208 (2014). DOI: 10.1016/j.pmatsci.2013.09.003
- F. Gao, X.J. Liu, J.S. Zhang, M.Z. Song, N. Li. J. Appl. Phys., 111, 084507 (2012). DOI: 10.1063/1.4704382
- Q. Yang, Z. GuO, X.H. Zhou, J.T. Zou, S.H. Liang. Mater. Lett., 153, 128 (2015). DOI: 10.1016/j.matlet.2015.04.045
- A.H. Jayatissa, K. Guo, A.C. Jayasuriya. Appl. Surf. Sci., 255, 9474 (2009). DOI: 10.1016/j.apsusc.2009.07.072
- I.V. Karpov, A.V. Ushakov, A.A. Lepeshev, L.Yu. Fedorov. Tech. Phys., 62 (1), 168 (2017). DOI: 10.1134/S106378421701011X
- A.V. Ushakov, I.V. Karpov, A.A. Lepeshev. J. Superconductivity and Novel Magnetism, 30 (12), 3351 (2017). DOI: 10.1007/s10948-017-4311-2
- A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, L.Yu. Fedorov. Int. J. Nanosci., 16 (4), 1750001 (2017). DOI: 10.1142/S0219581X17500016
- I.V. Karpov, A.V. Ushakov, V.G. Demin, A.A. Shaihadinov, A.I. Demchenko, L.Yu. Fedorov, E.A. Goncharova, A.K. Abkaryan. J. Magnetism and Magnetic Materials, 490, 165492 (2019). DOI: 10.1016/j.jmmm.2019.165492
- A.V. Uschakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov. Vacuum, 133, 25 (2016). DOI: 10.1016/j.vacuum.2016.08.007
- X. Hu, F. Gao, Y. Xiang, H. Wu, X. Zheng, J. Jiang, J. Li, H. Yang, S. Liu. Mater. Lett., 176, 282 (2016). DOI: 10.1016/j.matlet.2016.04.055
- S. Cui, E.C. Mattson, G. Lu, C. Hirschmugl, M. Gajdardziska-Josifovska, J. Chen. J. Nanopart Res., 14, 744 (2012). DOI: 10.1007/s11051-012-0744-5
- S. Serio, M.E. Melo Jorge, M.J.P. Maneira, Y. Nunes. Mater. Chem. Phys., 126, 73 (2011). DOI: 10.1016/j.matchemphys.2010.12.008
- E. Turgut, O. Coban, S. Sari tas, S. Tuzemen, M. Yi ldi ri m, E. Gur. Appl. Surf. Sci., 435, 880 (2018). DOI: 10.1016/j.apsusc.2017.11.133
- Y. Alajlani, F. Placido, A. Barlow, H.O. Chu, S. Song, S.U. Rahman., R. De Bold, D. Gibson. Vacuum, 144, 217 (2017). DOI: 10.1016/j.vacuum.2017.08.005
- G. Murdoch, M. Greiner, M. Helander, Z. Wang, Z. Lu. Appl. Phys. Lett., 93 (8), 318 (2008). DOI: 10.1063/1.2966140
- T. Gaewdang, N. Wongcharoen. IOP Conf. Ser.: Mater. Sci. Eng., 211, 012025 (2017). DOI: 10.1088/1757-899X/211/1/012025
- A. Jilani, M.S. Abdel-Wahab, M.H.D. Othman, V. Sajith, A. Alsharie. Optik, 144, 207 (2017). DOI: 10.1016/j.ijleo.2017.06.075
- S. Cho. Met. Mater. Int., 19 (6) 1327 (2013). DOI: 10.1007/s12540-013-6030-y
- D.A. Kudryashov, A.S. Gudovskikh, A.V. Babichev, A.V. Filimonov, A.M. Mozharov, V.F. Agekyan, E.V. Borisov, A.Yu. Serov, N.G. Filosofov. Semiconductors, 51 (1), 110 (2017). DOI: 10.1134/S1063782617010110
- A.B. Gordienko1, Yu.N. Zhuravlev, D.G. Fedorov. Phys. Solid State, 49 (2), 223 (2007). DOI: 10.1134/S1063783407020072
- D. Chauhan, V.R. Satsangi, S. Dass, R. Shrivastav. Bull. Mater. Sci., 29 (7), 709 (2007)
- B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P.J. Klar, Th. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Blasing, A. Krost, S. Shokovets, C. Muller, C. Ronning. Phys. Stat. Sol. B, 249 (8), 1487 (2012). DOI: 10.1002/pssb.201248128
- M. Heinemann, B. Eifert, C. Heiliger. Phys. Rev. B, 87, 115111 (2013). DOI: 10.1103/PhysRevB.87.115111
- M.T.S. Nair, L. Guerrero, O.L. Arenas, P.K. Nair. Appl. Surf. Sci., 150 (1-4), 143 (1999). DOI: 10.1016/S0169-4332(99)00239-1
- S.C. Ray. Solar Energy Materials and Solar Cells, 68 (3-4), 307 (2001). DOI: 10.1016/S0927-0248(00)00364-0
- A.Y. Oral, E. Men sur, M.H. Aslan, E. Ba saran. Mater. Chem. Phys., 83 (1), 140 (2004). DOI: 10.1016/j.matchemphys.2003.09.015
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.