GaAs/AlGaAs- and InGaAs/AlGaAs-heterostructures for high-power semiconductor infrared emitters
Gulyaev D. V. 1, Dmitriev D. V. 1, Fateev N. V. 1, Protasov D Yu. 1, Kozhukhov A. S. 1, Zhuravlev K. S. 1
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: gulyaev@isp.nsc.ru, ddmitriev@isp.nsc.ru, fateev@isp.nsc.ru, protasov@isp.nsc.ru, kozhukhov@isp.nsc.ru, zhur@isp.nsc.ru

PDF
The internal quantum efficiency of GaAs/AlGaAs- and InGaAs/AlGaAs-heterostructures for infrared light emitter diodes has been determined. The influence of the growth conditions of heterostructures grown by the molecular beam epitaxy and post-growth annealing on the quantum efficiency of heterostructures has been investigated. It has been shown that it is possible to increase the quantum luminescence efficiency of the studied heterostructures up to 75-80% at the average power by the combined optimization of these processes. Keywords: GaAs/AlGaAs and InGaAs/AlGaAs heterostructures, internal quantum exit, photoluminescence, molecular-beam epitaxy.
  1. W.A. Cahyadi, Y. Ho Chung. Opt. Express, 26 (15), 19657 (2018). DOI: 10.1364/OE.26.019657
  2. T. Tamura, Y. Maeda, M. Sekine, M. Yoshida. Electronics, 3, 282 (2014). DOI: 10.3390/electronics3020282
  3. A.C. Caputo. Digital Video Surveillance and Security (Elsevier Inc., 2014)
  4. E.F. Schubert. Light-emitting diodes (second edition) (Cambridge University Press, 2006)
  5. A.V. Malevskaya, N.A. Kalyuzhny, D.A. Malevsky, S.A. Mintairov, R.A. Saliy, A.N. Panchak, P.V. Pokrovsky, N.S. Potapovich, V.M. Andreev. FTP, 55 (7), 614 (2021) (in Russian) DOI: 10.21883/FTP.2021.07.51028.9646
  6. S.-Y. Lee, E. Lee, J.-H. Moon, B. Choi, J.-T. Oh, H.-H. Jeong, T.-Y. Seong, H. Amano. Photon. Technol. Lett. IEEE, 32 (17), 1041 (2020). DOI: 10.1109/LPT.2020.3010820
  7. H.-P.D. Yang, J.-N. Liu, F.-I. Lai, H.-Ch. Kuo, J.Y. Chi. J. Modern Opt., 55 (9), 1509 (2008). DOI: 10.1080/09500340701691608
  8. M. Li, H. Zhen, Y. Jing, H. Wang, N. Li. Opt. Quant Electron., 48 (2), 140 (2016). DOI: 10.1007/s11082-016-0415-3
  9. I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, A. Scherer. Appl. Phys. Lett., 63 (16), 2174 (1993). DOI: 10.1063/1.110575
  10. R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G.H. Dohler, P. Heremans. IEEE J. Selected Topics in Quant. Electronics, 8 (2), 248 (2002). DOI: 10.1109/2944.999177
  11. T. Kato, H. Susawa, M. Hirotani, T. Saka, Y. Ohashi, E. Shichi, S. Shibata. J. Crystal Growth, 1 07 (1-4), 832 (1991). DOI: 10.1016/0022-0248(91)90565-M
  12. S.-Ch. Ahn, B.-T. Lee, W.-Ch. An, D.-K. Kim, I.-K. Jang, J.-S. So, H.-J. Lee. J. Korean Phys. Society, 69 (1), 91 (2016). DOI: 10.3938/jkps.69.91
  13. D. Ban, H. Luo, H.C. Liu, Z.R. Wasilewski, A.J. SpringThorpe, R. Glew, M. Buchanan. J. Appl. Phys., 96 (9), 5243 (2004). DOI: 10.1063/1.1785867
  14. R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesel, G. Borghs, G.H. Dohler, P. Heremans. IEEE Trans. Electron. Dev., 47 (7), 1492 (2000). DOI: 10.1109/16.848298
  15. L. Han, M. Zhao, X. Tang, W. Huo, Z. Deng, Y. Jiang, W. Wang, H. Chen, Ch. Du, H. Jia. J. Appl. Phys., 127 (8), 085706 (2020). DOI: 10.1063/1.5136300
  16. I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter. Appl. Phys. Lett., 62 (2), 131 (1993). DOI: 10.1063/1.109348
  17. P. Bai, Y. Zhang, T. Wang, Z. Shi, X. Bai, Ch. Zhou, Y. Xie, L. Du, M. Pu, Z. Fu, J. Cao, X. Guo, W. Shen. Semicond. Sci. Technol., 35 (3), 035021 (2020). DOI: 10.1088/1361-6641/ab6dbf
  18. M.A. Ladugin, A.A. Marmalyuk, A.A. Padalitsa, K.Yu. Telegin, A.V. Lobintsov, S.M. Sapozhnikov, A.I. Danilov, A.V. Podkopaev, V.A. Simakov. Quant. Electron., 47 (8), 693 (2017). DOI: 10.1070/QEL16441
  19. A.L. Weisenhorn, P. Maivald, H.-J. Butt, P.K. Hansma. Phys. Rev. B, 45 (19), 11226 (1992). DOI: 10.1103/physrevb.45.11226
  20. R.F. Kubin, A.N. Fletcher. J. Luminescence, 27 (4), 455 (1982). DOI: 10.1016/0022-2313(82)90045-X
  21. P.A. Bokhan, N.V. Fateev, T.V. Malin, I.V. Osinnykh, D.E. Zakrevsky, K.S. Zhuravlev. J. Luminescence, 203 (4), 127 (2018). DOI: 10.1016/j.jlumin.2018.06.034
  22. Y.-S. Yoo, T.-M. Roh, J.-H. Na, S.J. Son, Y.-H. Cho. Appl. Phys. Lett., 102 (21), 211107 (2013). DOI: 10.1063/1.4807485
  23. T. Murotani, T. Shimanoe, S. Mitsui. J. Crystal Growth, 45, 308 (1978); DOI: 10.1016/0022-0248(78)90453-0
  24. E.C. Larkins, J.S. Harris. Molecular Beam Epitaxy of High-Quality GaAs and AlGaAs, ed. by Robin F.C. Farrow (William Andrew Inc., 1995)
  25. F. Stietz, Th. Allinger, V. Polyakov, J. Woll, A. Goldmann, W. Erfurth, G.J. Lapeyre, J.A. Schaefer. Appl. Surf. Sci., 104/105, 169 (1996). DOI: 10.1016/S0169-4332(96)00140-7
  26. M. Jalonen, M. Toivonen, P. Savolainen, J. Kongas, M. Pessa. Appl. Phys. Lett., 71 (4), 479 (1997). DOI: 10.1063/1.119584
  27. J. Dekker, A. Tukiainen, N. Xiang, S. Orsila, M. Saarinen, M. Toivonen, M. Pessa, N. Tkachenko, H. Lemmetyinen. J. Appl. Phys., 86 (7), 3709 (1999). DOI: 10.1063/1.371283
  28. H.H. Yee, Ch.-P. Yu. Appl. Opt., 42 (15), 2695 (2003). DOI: 10.1364/AO.42.002695
  29. T. Bouragba, M. Mihailovic, F. Reveret, P. Disseix, J. Leymarie, A. Vasson, B. Damilano, M. Hugues, J. Massies, J.Y. Duboz. J. Appl. Phys., 101 (7), 073510 (2007). DOI: 10.1063/1.2719289
  30. H. Peyre, J. Camassel, W.P. Gillin, K.P. Homewood, R. Grey. Mater. Sci. Eng. B, 28 (1-3), 332 (1994). DOI: 10.1016/0921-5107(94)90077-9

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru