Comparison of polarization fading compensation methods for broadband microwave photonic links by introduced noise and achievable dynamic range
Lebedev V.V.1, Petrov A.N.1, Parfenov M.V.1, Velichko E.N., Shamray A.V.1
1Ioffe Institute, St. Petersburg, Russia
Email: vladimir_l@mail.ru
Two methods for compensation of polarization fading in microwave photonic links have been studied. Comparison of noise characteristics has been performed and factors limiting the dynamic range of microwave photonic link have been analyzed on an example of a link with an external remote electrooptic modulator. The possibility of reaching spurious-free dynamic range close to the shot-noise limit SFDR3~116 dB Hz-2/3 has been demonstrated for 1000 m microwave photonic link. Keywords: Optical polarization, polarization fading, fiber-optic links, optical noise, dynamic range, balanced detection, microwave photonics, integrated optical modulator, polarization control
- G. Rajan. Optical Fiber Sensors: Advanced Techniques and Applications (CRC press, Boca Raton, 2015)
- W.S.C. Chang. RF Photonics Technology in Optical Fiber Links (Cambridge University Press, Cambridge, 2002)
- V.J. Urick, D.J. Mc Kinney, K.J. Williams. Fundamentals of microwave photonics (John Willey \& Sons, Hoboken, New Jersey, 2015)
- V.M. Petrov, A.V. Shamray. Interferentsiya i diffraktsiya dlya interferentsionnoy fotoniki (Lan, SPb., 2019) (in Russian)
- M. Ni, H. Yang, S. Xiong, Y. Hu. Appl. Opt., 45 (11), 2387 (2006). DOI: 10.1364/AO.45.002387
- M.E. Froggatt, D.K. Gifford, S. Kreger, M. Wolfe, B.J. Soller. J. Lightwave Technol., 24 (11), 4149 (2006). DOI: 10.1109/JLT.2006.883607
- R. Waterhouse, D. Novak. IEEE Microwav. Mag., 16 (8), 84 (2015). DOI: 10.1109/MMM.2015.2441593
- N.G. Walker, G.R. Walker. J. Lightwave Technol., 8 (3), 438 (1990). DOI: 10.1109/50.50740
- K. Kitayama, A. Maruta, Y. Yoshida. J. Lightwave Technol., 32 (20), 3411 (2014). DOI: 10.1109/JLT.2014.2310461
- A.D. Kersey, M.J. Marrone, A. Dandridge. J. Lightwave Technol., 8 (6), 838 (1990). DOI: 10.1109/50.54500
- A. Petrov, E. Velichko, V. Lebedev, I. Ilichev, P. Agruzov, M. Parfenov, A. Varlamov, A. Shamrai. In: O. Galinina, S. Andreev, S. Balandin, Y. Koucheryavy (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN 2019, ruSMART 2019. Lecture Notes in Computer Science (Springer, Cham, 2019), v. 11660, p. 727. DOI: 10.1007/978-3-030-30859-9_64
- A. Petrov, A. Tronev, P. Agruzov, A. Shamrai, V. Sorotsky. Electronics, 9 (11), 1861 (2020). DOI: 10.3390/electronics9111861
- I.V. Il'ichev, N.V. Toguzov, A.V. Shamray. Tech. Phys. Lett., 35 (9), 831 (2009). DOI: 10.1134/S1063785009090132
- W.K. Burns, R.P. Moeller, C.H. Bulmer, A.S. Greenblatt. Opt. Lett., 16 (6), 381 (1991). DOI: 10.1364/OL.16.000381
- T. Okoshi. J. Lightwave Technol., 3 (6), 1232 (1985). DOI: 10.1109/JLT.1985.1074336
- S. Belchikov. Komponenty i tekhnologii, 4, 196 (2008) (in Russian)
- M.S. Islam, T. Chau, S. Mathai, T. Itoh, M.C. Wu, D.L. Sivco, A.Y. Cho. IEEE Trans. Microwave Theory Tech., 47 (7), 1282 (1999). DOI: 10.1109/22.775467
- W.H.J. Aarts, G.D. Khoe. J. Lightwave Technol., 7 (7), 10333 (1989). DOI: 10.1109/50.29630
- M. Martinelli, R.A. Chipman. J. Lightwave Technol., 21 (9), 2089 (2003). DOI: 10.1109/JLT.2003.816835
- M. Martinelli, P. Martelli, S. M. Pietralunga. J. Lightwave Technol., 24 (11), 4172 (2006). DOI: 10.1109/JLT.2006.884228
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.