Comparison of polarization fading compensation methods for broadband microwave photonic links by introduced noise and achievable dynamic range
Lebedev V.V.1, Petrov A.N.1, Parfenov M.V.1, Velichko E.N., Shamray A.V.1
1Ioffe Institute, St. Petersburg, Russia
Email: vladimir_l@mail.ru

PDF
Two methods for compensation of polarization fading in microwave photonic links have been studied. Comparison of noise characteristics has been performed and factors limiting the dynamic range of microwave photonic link have been analyzed on an example of a link with an external remote electrooptic modulator. The possibility of reaching spurious-free dynamic range close to the shot-noise limit SFDR3~116 dB Hz-2/3 has been demonstrated for 1000 m microwave photonic link. Keywords: Optical polarization, polarization fading, fiber-optic links, optical noise, dynamic range, balanced detection, microwave photonics, integrated optical modulator, polarization control
  1. G. Rajan. Optical Fiber Sensors: Advanced Techniques and Applications (CRC press, Boca Raton, 2015)
  2. W.S.C. Chang. RF Photonics Technology in Optical Fiber Links (Cambridge University Press, Cambridge, 2002)
  3. V.J. Urick, D.J. Mc Kinney, K.J. Williams. Fundamentals of microwave photonics (John Willey \& Sons, Hoboken, New Jersey, 2015)
  4. V.M. Petrov, A.V. Shamray. Interferentsiya i diffraktsiya dlya interferentsionnoy fotoniki (Lan, SPb., 2019) (in Russian)
  5. M. Ni, H. Yang, S. Xiong, Y. Hu. Appl. Opt., 45 (11), 2387 (2006). DOI: 10.1364/AO.45.002387
  6. M.E. Froggatt, D.K. Gifford, S. Kreger, M. Wolfe, B.J. Soller. J. Lightwave Technol., 24 (11), 4149 (2006). DOI: 10.1109/JLT.2006.883607
  7. R. Waterhouse, D. Novak. IEEE Microwav. Mag., 16 (8), 84 (2015). DOI: 10.1109/MMM.2015.2441593
  8. N.G. Walker, G.R. Walker. J. Lightwave Technol., 8 (3), 438 (1990). DOI: 10.1109/50.50740
  9. K. Kitayama, A. Maruta, Y. Yoshida. J. Lightwave Technol., 32 (20), 3411 (2014). DOI: 10.1109/JLT.2014.2310461
  10. A.D. Kersey, M.J. Marrone, A. Dandridge. J. Lightwave Technol., 8 (6), 838 (1990). DOI: 10.1109/50.54500
  11. A. Petrov, E. Velichko, V. Lebedev, I. Ilichev, P. Agruzov, M. Parfenov, A. Varlamov, A. Shamrai. In: O. Galinina, S. Andreev, S. Balandin, Y. Koucheryavy (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN 2019, ruSMART 2019. Lecture Notes in Computer Science (Springer, Cham, 2019), v. 11660, p. 727. DOI: 10.1007/978-3-030-30859-9_64
  12. A. Petrov, A. Tronev, P. Agruzov, A. Shamrai, V. Sorotsky. Electronics, 9 (11), 1861 (2020). DOI: 10.3390/electronics9111861
  13. I.V. Il'ichev, N.V. Toguzov, A.V. Shamray. Tech. Phys. Lett., 35 (9), 831 (2009). DOI: 10.1134/S1063785009090132
  14. W.K. Burns, R.P. Moeller, C.H. Bulmer, A.S. Greenblatt. Opt. Lett., 16 (6), 381 (1991). DOI: 10.1364/OL.16.000381
  15. T. Okoshi. J. Lightwave Technol., 3 (6), 1232 (1985). DOI: 10.1109/JLT.1985.1074336
  16. S. Belchikov. Komponenty i tekhnologii, 4, 196 (2008) (in Russian)
  17. M.S. Islam, T. Chau, S. Mathai, T. Itoh, M.C. Wu, D.L. Sivco, A.Y. Cho. IEEE Trans. Microwave Theory Tech., 47 (7), 1282 (1999). DOI: 10.1109/22.775467
  18. W.H.J. Aarts, G.D. Khoe. J. Lightwave Technol., 7 (7), 10333 (1989). DOI: 10.1109/50.29630
  19. M. Martinelli, R.A. Chipman. J. Lightwave Technol., 21 (9), 2089 (2003). DOI: 10.1109/JLT.2003.816835
  20. M. Martinelli, P. Martelli, S. M. Pietralunga. J. Lightwave Technol., 24 (11), 4172 (2006). DOI: 10.1109/JLT.2006.884228

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru