Modeling of shock-wave loading of magnesium silicates on the example of forsterite
K K Maevskii 1,2
1Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
Email: konstantinm@hydro.nsc.ru
The results of modeling the shock-wave loading of Mg2SiO4 forsterite, which in this case is considered as a mixture of SiO2 quartz and MgO periclase, are presented. The model is based on the assumption that the components of the mixture under shock-wave loading are in thermodynamic equilibrium. The model allows us to reliably describe the phase transition region. The components of the investigated material are considered as a mixture of low and high pressure phases. Polymorphic phase transitions of quartz and periclase are taken into account in the calculation of forsterite in pressure range from 1 to 1000 GPa. The results are verified by experimental data obtained in dynamic experiments. Keywords: Equation of state, shock adiabat, thermodynamic equality, magnesium silicates, forsterite. DOI: 10.21883/0000000000
- E.J. Davies, M.S. Duncan, S. Root, R.G. Kraus, D.K. Spaulding, S.B. Jacobsen, S.T. Stewart. JGR Planets, 126, e2020JE006745 (2021). DOI: 10.1029/2020JE006745
- S. Root, J.P. Townsend, E. Davies, R.W. Lemke, D.E. Bliss, D.E. Fratanduono, R.G. Kraus, M. Millot, D.K. Spaulding, L. Shulenburger1, S.T. Stewart, S.B. Jacobsen. Geophys. Res. Lett., 45, 3865 (2018). DOI: 10.1029/2017GL076931
- T.S. Duffy, R.F. Smith. Front. Earth Sci., 7, 23 (2019). DOI: 10.3389/feart.2019.00023
- H. Niu, A.R. Oganov, A., X.Q. Chen, D. Li. Sci. Rep., 5, 18347 (2016). DOI: 10.1038/srep18347
- K. Umemoto, R.M. Wentzcovitch, S. Wu, M. Ji, C.Z. Wang, K.M. Ho. Earth. Planet. Sci. Lett., 478, 40 (2017). DOI: 10.1016/j.epsl.2017.08.032
- W.J. Borucki. Rep. Prog. Phys., 79, 036901 (2016). DOI: 10.1088/0034-4885/79/3/036901
- P.E. Driscoll. Planetary Interiors, Magnetic Fields, and Habitability. In: Handbook of Exoplanets. Ed. by H. Deeg, J. Belmonte (Springer, Cham., 2018), DOI: 10.1007/978-3-319-55333-7_76
- C.T. Unterborn, J.E. Kabbes, J.S. Pigott, D.M. Reaman, W.R. Panero. Astrophys. J., 793, 2 (2014). DOI: 10.1088/0004-637X/793/2/124
- J.L. Mosenfelder, P.D. Asimow, T.J.J. Geophys. Res., 112, B06208 (2007). DOI: 10.1029/2006JB004364
- J.L. Mosenfelder, P.D. Asimow, D.J. Frost, D.C. Rubie, T.J. Ahrens. J. Geophys. Res., 114, B01203 (2009). DOI:10.1029/2008JB005900
- R.M. Bolis, G. Morard, T. Vinci, A. Ravasio, E. Bambrink, M. Guarguaglini, M. Koenig, R. Musella, F. Remus, J. Bouchet, N. Ozaki, K. Miyanishi, T. Sekine, Y. Sakawa, T. Sano, R. Kodama, F. Guyot, A. Benuzzi-Mounaix. Geophys. Res. Lett., 43, 9475 (2016). DOI: 10.1002/2016GL070466
- M.G. Newman, R.G. Kraus, M.C. Akin, J.V. Bernier, A.M. Dillman, M.A. Homel, S. Lee, J. Lind, J.L. Mosenfelder, D.C. Pagan, N.W. Sinclair, P.D. Asimow. Geophys. Res. Lett., 45, 8129 (2018). DOI: 10.1029/2018GL077996
- T. Sekine, N. Ozaki, K. Miyanishi, Y. Asaumi, T. Kimura, B. Albertazzi, Y. Sato, Y. Sakawa, T. Sano, S. Sugita, T. Matsui, R. Kodama. Sci. Adv., 2, e1600157 (2016). DOI: 10.1126/sciadv.1600157
- M. Kumazawa, H. Sawamoto, E. Ohtani, K. Mazaki. Nature, 247, 356 (1974)
- D.K. Spaulding, R.S. McWilliams, R. Jeanloz, J.H. Eggert, P.M. Celliers, D.G. Hicks, G.W. Collins, R.F. Smith. Phys. Rev. Lett., 108, 065701 (2012). DOI: 10.1103/PhysRevLett.108.065701
- Y. Syono, T. Goto, J. Sato, H. Takei. J. Geophys. Res., 86, 6181 (1981). DOI: 10.1029/JB086iB07p06181
- G.J. Finkelstein, P.K. Dera, S. Jahn, A.R. Oganov, C.M. Holl, Y. Meng, T.S. Duffy. Am. Mineral., 99 (1), 35 (2014). DOI: 10.2138/am.2014.4526
- X.G. Huang, X.H. Yuan, Z.A. Chen, F.S. Liu, W.M. Bai. Sci. China Earth. Sci., 592016, 619 (2016). DOI: 10.1007/s11430-015-5231-2
- L.V. Altshuler, R.F. Trunin, G.V. Simakov. Izv. AN SSSR. Ser. Fizika Zemli, 29, 10 (1) (in Russian)
- K.K. Maevskii, S.A. Kinelovskii. Tech. Phys., 64, 1090 (2019). DOI: 10.1134/S1063784219080127
- V.V. Milyavskii, V.E. Fortov, A.A. Frolova, K.V. Khishchenko, A.A. Charakhch'yan, L.V. Shurshalov. Comput. Math. Math. Phys., 46, 873 (2006). DOI: 10.1134/S0965542506050113
- K.K. Maevskii K.K. AIP Conf. Proc., 2051, 020181 (2018). DOI: 10.1063/1.5083424
- K.K. Maevskii. Tech. Phys., 66 (5), 791 (2021). DOI: 10.1134/S1063784221050145
- Maevskii K. AIP Conf. Proc., 2103, 020009 (2019). 10.1063/1.5099873
- K.K. Maevskii, S.A. Kinelovskii. High Temperature, 56 (6) 853 (2018). DOI: 10.1134/S0018151X18060172
- K.K. Maevskii. J. Phys. Conf. Series., 894, 012057 (2017). DOI: 10.1088/1742-6596/894/1/012057
- Ya.B. Zel'dovich, Yu.P. Raizer, Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Fizmatlit, M., 2008), s. 519 (in Russian)
- K.K. Maevsky. ZhTF, 92 (1), 100 (2022) (in Russian). DOI: 10.21883/JTF.2022.01.51858.200-21
- S.P. Marsh (ed.) LASL Shock Hugoniot Data (Univ. California Press., Berkeley, 1980)
- P.R. Levashov, K.V. Khishchenko, I.V. Lomonosov, V.E. Fortov. AIP Conf. Proc., 706, 87 (2004). http://www.ihed.ras.ru/rusbank/
- L.V. Altshuler, R.F. Trunin, G.V. Simakov. Izv. AN SSSR. Ser. Fizika Zemli, 29, 10 (1) (in Russian)
- Compendium of shock wave data, ed. by M. Thiel (Livermore, Lawrence Livermore Laboratory, Report UCRL-50108, 1977), p. 401
- K. Miyanishi, Y. Tange, N. Ozaki, T. Kimura, T. Sano, Y. Sakawa, T. Tsuchiya, R. Kodama. Phys. Rev. E, 92, 023103 (2015). DOI: 10.1103/PhysRevE.92.023103
- M.A. Podurets, G.V. Simakov, R.F. Trunin. Izv. AN SSSR 4, 28 (1968) (in Russian)
- R.F. Trunin, G.V. Simakov, M.A. Podurets. Izv. AN SSSR 2, 33 (1971) (in Russian).
- R.F. Trunin, Issledovaniya ekstremal'nykh sostoyanii kondensirovannykh veshchestv metodom udarnykh voln. Uravneniya Gyugonio (RFYaF-VNIIEF, Sarov, 2006), s. 137 (in Russian)
- A.A. Bakanova, I.P. Dudoladov, Yu.N. Sutulov. Prikladnaya mekhanika i tekh. fizika 6, 167 (1972) (in Russian)
- K.K. Maevskii, S.A. Kinelovskii. AIP Conf. Proc., 1683, 020132 (2015). 10.1063/1.4932822
- J.L. Mosenfelder, P.D. Asimow, T.J. Ahrens. J. Geophys. Res., 112, B06208 (2007). DOI: 10.1029/2006JB004364
- A.M. Dziewonski, D.L. Anderson. Phys. Earth Planet. Inter., 25, 297 (1981). DOI:10.1016/0031-9201(81)90046-7
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.