Autowave description of the temperature effect during deformation of FCC metals
Zuev L. B. 1, Barannikova S. A. 1, Kolosov S. V. 1
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
Email: lbz@ispms.ru, bsa@ispms.ru

PDF
The data of comparative studies of the development of plastic flow in pure aluminum and iron-based austenitic alloy (Fe-Cr-Ni) are presented. Deformation patterns were studied during tests in the temperature range 143≤ T≤420 K. It was found that the effect of temperature is different for these two cases. When a stationary dissipative structure appears at the stage of parabolic strain hardening, the effect of temperature is determined by the change in the length of the localized plasticity autowave. At the stage of linear strain hardening, when a phase autowave of localized plasticity is formed, the effect is associated with an exponential increase in its rate with temperature. Keywords: plastic deformation, localization, metals, Debye temperature.
  1. L.B. Zuev, S.A. Barannikova. Crystals, 9, 458 (2019). DOI: 10.3390/cryst9090458
  2. L.B. Zuev. In: Multiscale Biomechanics and Tribology of Inorganic and Organic Systems, ed. by G.-P. Ostermeyer, V.L. Popov, E.V. Shilko, O.S. Vasiljeva (Springer, Berlin, 2021), p. 245. DOI: 10.1007/978-3-030-60124-9_12
  3. J. Pelleg. Mechanical Properties of Materials (Springer, Dordrecht, 2013)
  4. A. Kadich, D. Edelen. Kalibrovochnaya teoriya dislokatsij i disklinatsij (Mir, M., 1987) (in Russian)
  5. N. Tsuchida, Y. Morimoto, T. Tonan, Y. Shibata, K. Fukaura, R. Ueji. ISIJ Int., 51, 124 (2011). DOI: 10.2355/isijinternational.51.124
  6. D. Caillard, J.L. Martin. Thermally Activated Mechanisms in Crystal Plasticity (Elsevier, Oxford, 2003)
  7. L.B. Zuev, Y.A. Khon, Phys. Mesomech., 25 (2), 103 (2022). DOI: 10.1134/S1029959922020011
  8. G.A. Malygin. Phys. Sol. St., 48 (4), 693 (2006) DOI: 10.1134/S1063783406040123
  9. J.S. Langer, E. Bouchbinder, T. Lookman. Acta Mater., 58 (12), 3718 (2010). DOI: 10.1016/j.actamat.2010.03.009
  10. A. Ishii, J. Li, S. Ogata. Int. J. Plast., 82, 32 (2016). DOI: 10.1016/j.ijplas.2016.01.019
  11. I. Kovacs, N.Q. Chinh, E. Kova cs-Csetenyi. Phys. Stat. Sol. A, 17 (7), 3 (2002). DOI: 10.1002/1521-396X
  12. P. Landau, R.Z. Shneck, G. Makov, A. Venkert. Mater. Sci. Eng., 3, 012002 (2009). DOI: 10.1088/1757-899X/3/1/012004
  13. A. Asharia, A. Beaudoin, R. Miller. Math. Mech. Sol., 13, 292 (2008). DOI: 10.1177/1081286507086903
  14. R.J. McDonald, C. Efstathiou, P. Kurath. J. Eng. Mater. Technol., 131, 652 (2009). DOI: 10.1115/1.3120410
  15. C. Fressengeas, A. Beaudoin, D. Entemeyer, T. Lebedkina, M. Lebyodkin, V. Taupin. Phys. Rev. B, 790, 14108 (2009). DOI: 10.1103/PhysRevB.79.014108
  16. M.A. Lebyodkin, N.P. Kobelev, Y. Bougherira, D. Entemeyer, C. Fressengeas, V.S. Gornakov, T.A. Lebedkina, I.V. Shashkov. Acta Mater., 60, 3729 (2012). DOI: 10.1016/j.actamat.2012.03.026

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru