Advanced Hall Magnetometer with improved performance
Kh. R. Rostami1
1Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
Email: rostami@ms.ire.rssi.ru

PDF
A sharp jump in the magnetic response near the first critical twins magnetic field Hic1 was generated under the combined action of a constant biased and a local oscillating damped magnetic fields on the surface of the YBa2Cu3O7-x epitaxial film. The possibility of increasing due to this jump the sensitivity of a standard Hall magnetometer from ~2.5·10-3 Gs/Hz1/2 to ~8·10-7 Gs/Hz1/2 in the frequency range ~1 kHz has been demonstrated. The range of the measured magnetic fields of the magnetometer was extended to the region of weak fields ~(8·10-7-2.5·10-3) Oe, while maintaining the accuracy and linearity of the order of ~0.01%. To increase the sensitivity, linearity and noise sustainability the beginning of the operating point of the magnetometer was shifted to the twins values Hic1. The increased spatial resolution of the magnetometer, determined by the linear dimensions of the YBa2Cu3O7-x film twins, was provided by an increase in the total magnetic field directed perpendicular to the film surfaces and the Hall transducer and reached ~300 nm. Keywords: the twin high temperature superconductor, the density jump of the trapped magnetic flux, biased magnetic field, oscillating damped local magnetic bias field, two-stage Hall magnetometer.
  1. Superconductor Applications: SQUIDs and Machines. Ed. by B. B. Schwartz, S. Foner (Plenum Press, NY., 1977), v. 1
  2. M.E. Limes, E.L. Foley, T.W. Kornack, S. Caliga, S. McBride, A. Braun, W. Lee, V.G. Lucivero, M.V. Romalis. Phys. Rev. Appl., 14, 011002 (2020). DOI: 10.1103/PhysRevApplied.14.011002
  3. E.B. Aleksandrov, A.K. Vershovskii. Phys. Usp., 52, 573 (2009). DOI: 10.3367/UFNr.0179.200906f.0605
  4. J.F. Barry, J.M. Schloss, E. Bauch, M.J. Turner, C.A. Hart, L.M. Pham, R.L. Walsworth. Rev. Mod. Phys., 92, 015004 (2020). DOI: 10.1103/RevModPhys.92.015004
  5. S. Dushenko, K. Ambal, R.D. McMichael. Phys. Rev. Appl., 14, 054036 (2020). DOI: 10.1103/PhysRevApplied.14.054036
  6. G.V. Karpov. Optoelectronics, Instrumentation and Data Processing, 51 (1), 58 (2015)
  7. R. Khasanov, Yu. Talanov, G. Teitel'baum. Phys. Rev. B, 54, 13339 (1996). DOI: 10.1103/PhysRevB.54.13339
  8. B. Ando, S. Baglio, A.R. Bulsara, C. Trigona. Sensors and Actuators, 151, 145 (2009). DOI: 10.1016/j.sna.2009.02.029
  9. Kh.R. Rostami. Instrum. Exp. Tech., 59 (2), 273 (2016). DOI: 10.1134/S0020441216010115
  10. V.K. Ignat'ev, A.A. Orlov, S.V. Perchenko, D.A. Stankevich. Tech. Phys. Lett., 43, 687 (2017). DOI: 10.1134/S1063785017080090
  11. A. Oral, S.J. Bending, M. Henini. Appl. Phys. Lett., 69, 1324 (1996). DOI: 10.1063/1.117582
  12. Kh.R. Rostami. Sbornik dokl. XXVII Mezhdunarodnaya konferentsiya elektromagnitnoe pole i materialy ( fundamental'nye fizicheskie issledovaniya) (MEI, M., 2019), s. 536. (in Russian)
  13. K.R. Rostami, I.P. Nikitin. Measurement, 153, 107423 (2020). DOI: 10.1016/j.measurement.2019.107423
  14. M. Eisterer. Phys. Rev. B, 99, 094501 (2019). DOI: 10.1103/PhysRevB.99.094501
  15. Kh.R. Rostami. Int. J. Mod. Phys. B, 32 (31), 1850346 (2018). DOI: 10.1142/S0217979218503460
  16. Kh.R. Rostami. JETP Lett., 108 (11), 734 (2018). DOI: 10.1134/S0021364018230078
  17. Kh.R. Rostami. FTT, 64 (2), 149 (2022) (in Russian). DOI: 10.21883/FTT.2022.02.51945.107
  18. S. Nakahara, T. Boone, M.F. Yan, G.J. Fisanick, D.W. Johnson. J. Appl. Phys., 63, 451 (1988). DOI: 10.1063/1.341149
  19. A.A. Abrikosov, A.I. Buzdin, M.L. Kulic, D.A. Kuptsov. Sov. Phys. JETP, 68 (1), 210 (1989)
  20. B. Kalisky, J.R. Kirtley, J.G. Analytis, J.-H. Chu, I.R. Fisher, K.A. Moler. Phys. Rev. B, 83, 064511 (2011). DOI: 10.1103/PhysRevB.83.064511
  21. Kh.R. Ozmanyan, V.B. Sandomirskii, A.A. Sukhanov. Supercond. Sci. Technol., 3, 255 (1990). DOI: 10.1088/0953-2048/3/5/008
  22. Paul Horowitz, Winfield Hill. The ART of Electronics (Cambridge University Press, Cambridge London NY., New Rochelle Melbourne Sydney, 1980), v. 1
  23. Kh.R. Rostami. Preoibrazovatel kod-tok. Patent na izobretenie N 2007862, B.I. 1994. N 3. S. 1 (in Russian)
  24. Kh.R. Rostami. Tech. Phys., 65 (12), 1975 (2020). DOI: 10.1134/S1063784220120233
  25. V.V. Mantorov. Meas. Tech., 37 (4), 433 (1994). DOI: 10.1007/BF00981359
  26. V. Morosh, J. Linek, B. Muller, M.J. Marti nez-Perez, S. Wolter, T. Weimann, J. Beyer, T. Schurig, O. Kieler, A.B. Zorin, R. Kleiner, D. Koelle. Phys. Rev. Appl., 14, 054072 (2020). DOI: 10.1103/PhysRevApplied.14.054072

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru