Synthesis of potassium-sodium niobate powder in water vapor for piezoelectric ceramics manufacturing
Kholodkova A. A.
1,2, Smirnov A. V.
1, Tikhonov A. A.
1, Shishkovsky
11Skolkovo Institute of Science and Technology, Moscow, Russia
2Lomonosov Moscow State University, Moscow, Russia
Email: anastasia.kholodkova@gmail.com, smirnoff-andrey2009@yandex.ru, a.tikhonov@skoltech.ru, I.Shishkovsky@skoltech.ru
In this work, for the first time, single-phase potassium-sodium niobate powder with a primary particle size of 0.3-3.1 μm was synthesized in a water vapor medium at a temperature of 260oC and a pressure of 4.69 MPa. Two different techniques, the traditional one and laser stereolithography, were applied to produce powder-based ceramics with a density reaching 80-85% of the theoretical value. A set of the most important piezoelectric characteristics was studied for the prepared ceramics. The obtained preliminary results indicated the prospect of improving the phase, structural, and piezoelectric properties of potassium-sodium niobate ceramics by controlling the parameters of powder synthesis in water vapor and enhancement of the sintering conditions. Keywords: piezoelectric ceramics, complex oxide synthesis, potassium-sodium niobite, laser stereolithography.
- J. Rodel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015). DOI: 10.1016/j.jeurceramsoc.2014.12.013
- P. Pop-Ghe, N. Stock, E. Quandt, Sci Rep., 9, 19775 (2019). DOI: 10.1038/s41598-019-56389-9
- B. Malivc, J. Koruza, J. Hrevsvcak, J. Bernard, K. Wang, J.G. Fisher, A. Benvcan, Materials, 8, 8117 (2015). DOI: 10.3390/ma8125449
- J.-Q. Zhao, Y.-G. Liu, M.-H. Fang, Z.-H. Huang, T.-H. Zhang, J. Electroceram., 32, 255 (2014). DOI: 10.1007/s10832-013-9883-z
- M.N. Danchevskaya, Yu.D. Ivakin, S.N. Torbin, G.P. Muravieva, O.G. Ovchinnikova, J. Mater. Sci, 41, 1385 (2006). DOI: 10.1007/s10853-006-7411-0
- A.A. Kholodkova, M.N. Danchevskaya, Yu.D. Ivakin, A.D. Smirnov, S.G. Ponomarev, A.S. Fionov, V.V. Kolesov, Ceram Int., 45, 23050 (2019). DOI: 10.1016/j.ceramint.2019.07.353
- A.A. Kholodkova, M.N. Danchevskaya, Yu.D. Ivakin, G.P. Muravieva, A.S. Tyablikov, J. Supercrit. Fluids, 117, 194 (2016). DOI: 10.1016/j.supflu.2016.06.018
- V.A. Kreisberg, Yu.D. Ivakin, M.N. Danchevskaya, J. Eur. Ceram. Soc., 39, 508 (2019). DOI: 10.1016/j.jeurceramsoc.2018.09.031
- A.A. Kholodkova, S.G. Ponomarev, A.D. Smirnov, Yu.D. Ivakin, M.N. Danchevskaya, IOP Conf. Ser.: Mater. Sci. Eng., 447, 012074 (2018). DOI: 10.1088/1757-899X/447/1/012074
- W. Chen, F. Wang, K. Yan, Y. Zhang, D. Wu, Ceram. Int., 45, 4880 (2019). DOI: 10.1016/j.ceramint.2018.11.185
- L. Zhang, T. Wang, J. Sun, X. Chen, X. Hong, P. Zhou, J. Bai, J. Micromech. Mol. Phys., 5, 2050011 (2020). DOI: 10.1142/S2424913020500113
- A. Smirnov, S. Chugunov, A. Kholodkova, M. Isachenkov, A. Tikhonov, O. Dubinin, I. Shishkovsky, Materials, 15, 960 (2022). DOI: 10.3390/ma15030960
- A. Vaitkus, A. Merkys, S. Gravzulis, J. Appl. Crystallogr., 54, 661 (2021). DOI: 10.1107/S1600576720016532
- J. Ryu, J.-J. Choi, B.-D. Hahn, D.-S. Park, W.-H. Yoon, K.-Y. Kim, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54, 2510 (2007). DOI: 10.1109/TUFFC.2007.569
- B. Ponraj, K.B.R. Varma, Integr. Ferroelectrics, 176, 257 (2016). DOI: 10.1080/10584587.2016.1252659
- P.D. Gio, T.T. Bau, N.V. Hoai, N.Q. Nam, J. Mater. Sci Chem. Eng., 8, 1 (2020). DOI: 10.4236/msce.2020.87001
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.