Spintronic properties of the interface between Si(111) and 3C-SiC(111) grown by the method of coordinated substitution of atoms
Kukushkin S. A. 1, Osipov A. V. 2, Osipova E. V. 2
1St. Petersburg State University, St. Petersburg, Russia
2Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
Email: sergey.a.kukushkin@gmail.com, andrey.v.osipov@gmail.com

The properties of the interface between Si(111) and 3C-SiC(111) grown by the method of coordinated substitution of atoms were studied by the density functional theory in spin-polarized approximation. The most favourable atomic configuration at the interface was found. It is shown that SiC faces Si with the carbon plane, and SiC separates 3 Si atoms out of 16 from the second layer of substrate atoms. As a result, the 3 Si atoms in the substrate each have 3 bonds instead of 4, and the 3 C atoms in the bottom layer of the SiC film also have 3 bonds. It is these atoms that have a magnetic moment due to the unpaired p-electrons. It was found that for the electron with spin "majority" this interface is an ordinary semiconductor, and for the electron with spin "minority" it is a two-dimensional ferromagnetic metal. Keywords: silicon carbide, ferromagnetic semi-metals, terahertz radiation, density functional theory, spintronics.
  1. T. Kimoto, J.A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications (Wiley-IEEE Press, Singapore, 2014), p. 75--180.
  2. N.T. Son, C.P. Anderson, A. Bourassa, K.C. Miao, Ch. Babin, M. Widmann, M. Niethammer, J.U. Hassan, N. Morioka, I.G. Ivanov, F. Kaiser, J. Wrachtrup, D.D. Awschalom, Appl. Phys. Lett., 116, 190501 (2020). DOI: 10.1063/5.0004454
  3. A. Boretti, Nat. Photon., 8, 88 (2014). DOI: 10.1038/nphoton.2013.375
  4. H.J. von Bardeleben, S.A. Zargaleh, J.L. Cantin, W.B. Gao, T. Biktagirov, U. Gerstmann, Phys. Rev. Mater., 3, 124605 (2019). DOI: 10.1103/PhysRevMaterials.3.124605
  5. S.A. Kukushkin, A.V. Osipov, J. Phys. D: Appl. Phys., 47, 313001 (2014). DOI: 10.1088/0022-3727/47/31/313001
  6. S.A. Kukushkin, A.V. Osipov, J. Phys. D: Appl. Phys., 50, 464006 (2017). DOI: 10.1088/1361-6463/aa8f69
  7. L.M. Sorokin, N.V. Veselov, M.P. Shcheglov, A.E. Kalmykov, A.A. Sitnikova, N.A. Feoktistov, A.V. Osipov, S.A. Kukushkin, Tech. Phys. Lett., 34, 992 (2008). DOI: 10.1134/S1063785008110278
  8. N.T. Bagraev, S.A. Kukushkin, A.V. Osipov, V.V. Romanov, L.E. Klyachkin, A.M. Malyarenko, V.S. Khromov, Semiconductors, 55, 137 (2021). DOI: 10.1134/S106378262102007X
  9. N.T. Bagraev, S.A. Kukushkin, A.V. Osipov, V.L. Ugolkov, Fiz. Tekh. Poluprovodn., 56 (7), 715 (2022) (in Russian). DOI: 10.21883/FTP.2022.07.52766.24
  10. T. Tsuneda, Density functional theory in quantum chemistry (Springer, Tokio, 2014), p. 65--124
  11. U. von Barth, L. Hedin, J. Phys. C, 5, 1629 (1972). DOI: 10.1088/0022-3719/5/13/012
  12. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865
  13. J. Hafner, J. Comput. Chem., 29, 2044 (2008). DOI: 10.1002/jcc.21057
  14. F. Tran, P. Blaha, Phys. Rev. Lett., 102, 226401 (2009). DOI: 10.1103/PhysRevLett.102.226401
  15. J. Kudrnovsky, I. Turek, V. Drchal, F. Maca, J. Masek, P. Weinberger, P. Bruno, J. Supercond., 16, 119 (2003). DOI: 10.1023/A:1023257306608

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru