Collapsing Gunn Domains as a Mechanism of Self-Supporting Conducting State in Reversely Biased High-Voltage GaAs Diodes
Ivanov M. S. 1, Rozhkov A. V. 1, Rodin P. B. 1
1Ioffe Institute, St. Petersburg, Russia

Switching of a high-voltage GaAs diode to the conducting state in the delayed impact-ionization mode is simulated and the results are compared with experimental data. It is shown that the effect of long-term (up to 100 ns) sustaining of the conducting state of the diode after switching is due to the appearance of narrow (of the order of a micrometer) ionizing Gunn domains, the so-called collapsing domains, in the electron-hole plasma. Impact ionization in collapsing domains and in the edge (cathode and anode) domains of a strong electric field (~ 300 kV/cm) maintains a high concentration of nonequilibrium carriers (≥ 1017 cm-3) during the entire duration of the applied reverse polarity voltage pulse. Keywords: high-voltage GaAs diodes, impact ionization, subnanosecond switches, Gunn effect, lock-on effect.
  1. High-power optically activated solid-state switches, ed. by A. Rosen, F. Zutavern (Artech House, Boston-London, 1994)
  2. S.S. Khludkov, O.P. Tolbanov, M.D. Vilisova, I.A. Prudaev, Poluprovodnikovye pribory na osnove arsenida galliya s glubokimi primesnymi tsentrami (Izd. Dom Tomsk. Gos. Univ., Tomsk, 2016) (in Russian)
  3. A.V. Rozhkov, M.S. Ivanov, P.B. Rodin, Pis'ma Zh. Tekh. Fiz., 48 (16), 25 (2022) (in Russian). DOI: 10.21883/PJTF.2022.16.53203.19271
  4. S.N. Vainshtein, V.S. Yuferev, J.T. Kostamovaara, J. Appl. Phys., 97 (2), 024502 (2005). DOI: 10.1063/1.1839638
  5. S. Selberherr, Analysis and simulation of semiconductor devices (Springer-Verlag, Wien-N.Y., 1984)
  6. S.N. Vainshtein, V.S. Yuferev, J.T. Kostamovaara, M.M. Kulagina, H.T. Moilanen, IEEE Trans. Electron Dev., 57 (4), 733 (2010). DOI: 10.1109/TED.2010.2041281
  7. M.S. Ivanov, V.I. Brylevskiy, I.V. Smirnova, P.B. Rodin, J. Appl. Phys., 131 (1), 014502 (2022). DOI: 10.1063/5.0077092
  8. M.S. Ivanov, V.I. Brylevskiy, P.B. Rodin, Tech. Phys. Lett., 47, 661 (2021). DOI: 10.1134/S1063785021070087
  9. H. Benda, E. Spenke, Proc. IEEE, 55 (8), 1331 (1967). DOI: 10.1109/PROC.1967.5834
  10. L. Hu, J. Su, Z. Ding, Q. Hao, X. Yuan, J. Appl. Phys., 115 (9), 094503 (2014). DOI: 10.1063/1.4866715
  11. I.A. Prudaev, M.G. Verkholetov, A.D. Koroleva, O.P. Tolbanov, Tech. Phys. Lett., 44, 465 (2018). DOI: 10.1134/S106378501806007X.
  12. I.A. Prudaev, V.L. Oleinik, T.E. Smirnova, V.V. Kopyev, M.G. Verkholetov, E.V. Balzovsky, O.P. Tolbanov, IEEE Trans. Electron Dev., 65 (8), 3339 (2018). DOI: 10.1109/TED.2018.2845543
  13. I.A. Prudaev, S.N. Vainshtein, M.G. Verkholetov, V.L. Oleinik, V.V. Kopyev, IEEE Trans. Electron Dev., 68 (1), 57 (2021). DOI: 10.1109/TED.2020.3039213

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245