Influence of the upper liquid layer on vortex breakdown in the bioreactor model
Naumov I.V.1, Sharifullin B.R.1, Shtern V.N.1
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: naumov@itp.nsc.ru

PDF
The motion caused by rotation of the upper disk in a stationary vertical cylindrical container filled with two immiscible fluids is studied experimentally. The vortex breakdown the emergence of reversed motion on the cylinder axis in the lower liquid is investigated as a function of the thickness of the upper liquid layer. It is found that despite the fact that the motion of the upper fluid converges spirally to the cylinder axis near the interface, the vortex breakdown in the lower fluid occurs similarly to what is observed in the case of a single fluid, with the upper disk swirling. This curious result may be practically important for the operation of vortex bioreactors. Keywords: Confined swirling flow, vortex dynamics, bubbly vortex breakdown, immiscible fluids.
  1. A.V. Savelyeva, A.A. Nemudraya, V.F. Podgornyi, N.V. Laburkina, Yu.A. Ramazanov, A.P. Repkov, E.V. Kuligina, V.A. Richter, Biotechnol. Appl. Biochem., 64 (5), 712 (2017). DOI: 10.1002/bab.1527
  2. S. Fang, P.W. Todd, T.R. Hanley, Chem. Eng. Sci., 170, 597 (2017). DOI: 10.1016/j.ces.2017.03.019
  3. T.O. Chaplina, in Physical and mathematical modeling of earth and environment processes, ed. by V. Karev, D. Klimov, K. Pokazeev (Springer, Cham, 2019), p. 159. DOI: 10.1007/978-3-030-11533-3_17
  4. V. Shtern, Cellular flows. Topological metamorphoses in fluid mechanics (Cambridge University Press, Cambridge, 2018). DOI: 10.1017/9781108290579
  5. M.P. Escudier, Exp. Fluids, 2 (4), 189 (1984). DOI: 10.1007/BF00571864
  6. P. Moise, J. Mathew, J. Fluid Mech., 873, 322 (2019). DOI: 10.1017/jfm.2019.401
  7. S. Sharma, P.B. Sachan, N. Kumar, R. Ranjan, S. Kumar, K. Poddar, Phys. Fluids, 33 (9), 093606 (2021). DOI: 10.1063/5.0061025
  8. S.V. Alekseenko, S.S. Abdurakipov, M.Y. Hrebtov, M.P. Tokarev, V.M. Dulin, D.M. Markovich, Int. J. Heat Fluid Flow, 70, 363 (2018). DOI: 10.1016/j.ijheatfluidflow.2017.12.009
  9. I.V. Naumov, V.N. Shtern, Priroda, No. 4, 12 (2021) (in Russian). DOI: 10.7868/S0032874X21040025
  10. I.V. Naumov, B.R. Sharifullin, M.A. Tsoy, V.N. Shtern, Phys. Fluids, 32 (6), 061706 (2020). DOI: 10.1063/5.0012156
  11. I.V. Naumov, B.R. Sharifullin, V.N. Shtern, Phys. Fluids, 32 (1), 014101 (2020). DOI: 10.1063/1.5132584

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru