Few-Layer Graphene Structures as a Promising Mycotoxin Sorbent
Voznyakovskii A.P. 1, Karmanov A.P.2, Kocheva L.S.3, Neverovskaya A. Yu. 1, Vozniakovskii A.A. 4, Kanarskii A. V.5, Semenov E. I.5, Kidalov S.V. 4
1Institute for Synthetic Rubber, Saint-Petersburg, Russia
2Institute of Biology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences,
3Academician Yushkin Institute of Geology, Komi Scientific Center, Russian Academy of Sciences, Ural Branch, Syktyvkar, Russia
4Ioffe Institute, St. Petersburg, Russia
5Kazan National Research Technological University, Kazan, Russia
Email: voznap@mail.ru, alexey_inform@mail.ru, Kidalov@mail.ioffe.ru

PDF
It has been experimentally established that samples of low-layer graphene, synthesized by carbonization of plant materials (lignin, cellulose, and spruce bark) under conditions of self-propagating high-temperature synthesis, are effective sorbents for mycotoxin T-2 under conditions simulating the environment in the gastrointestinal tract of mammals, and are capable of irreversibly sorb at least 94.6% of mycotoxin with a sorption capacity of 1 mg of mycotoxins per 1 g of sorbent. Key words: few-layer graphene, self-propagating high-temperature synthesis, specific surface area, mycotoxin sorption. Keywords: few-layer graphene, self-propagating high-temperature synthesis, specific surface, sorption of mycotoxins.
  1. M.C. Smith, S. Madec, E. Coton, N. Hymery. Toxins, 8 (4), 94 (2016). DOI: 10.3390/toxins8040094
  2. M.R. Zain. J. Saudi Chem. Soc., 15 (2), 129 (2011). DOI: 10.1016/j.jscs.2010.06.006
  3. G. Spicher. Mycotoxins-Production, Isolation, Separation and Purification (Mykotoxine, Bildung, Isolierung, Trennung und Reinigung) (Elsevier, Amsterdam, 1984)
  4. J. Pleadin, J. Frece, K. Markov. Adv. Food Nutr. Res., 89, 297 (2019). DOI: 10.1016/bs.afnr.2019.02.007
  5. N. Jiang, Z. Li, L. Wang, H. Li, X. Zhu, X. Feng, M. Wang. Int. J. Food Microbiol., 311, 108333 (2019). DOI: 10.1016/j.ijfoodmicro.2019.108333
  6. L. Afsah-Hejri, P. Hajeb, R.J. Ehsani. Compr. Rev. Food Sci. Food Saf., 19 (4), 1777 (2020). DOI: 10.1111/1541-4337.12594
  7. G. Avantaggiato, M. Solfrizzo, A. Visconti. Food Addit. Contam., 22, 379 (2005). DOI: 10.1080/02652030500058312
  8. G.A. Gouda, H.M. Khattab, M.A. Abdel-Wahhab, S.A. El-Nor, H.M. El-Sayed, S.M. Kholif. Small Ruminant Res., 175, 15 (2019). DOI: 10.1016/j.smallrumres.2019.04.003
  9. A. Dakovic, M. Tomasevic-Canovic, V. Dondur, G.E. Rottinghaus, V. Medakovic, S. Zaric. Colloids Surf. B, 46 (1), 20 (2005). DOI: 10.1016/j.colsurfb.2005.08.013
  10. Z.I. Tanveer, Q. Huang, L. Liu, K. Jiang, D. Nie, H. Pan, Y. Chen, X. Liu, L. Luan, Z. Han, Y. Wu. J. Chromatogr. A, 1630, 461515 (2020). DOI: 10.l016/jJhroma.2020.46l515
  11. P. Horky, E. Venusova, T. Aulichova, A. Ridoskova, J. Skladanka, S. Skalickova. Plos one, 15 (9), e0239479 (2020). DOI: 10.1371/journal.pone.0239479
  12. A. Abbasi Pirouz, R. Abedi Karjiban, F. Abu Bakar, J. Selamat. Toxins, 10 (9), 361 (2018). DOI: 10.3390/toxins10090361
  13. Z. Bytesnikova, V. Adam, L. Richtera. Food Control, 121 (9), 107611 (2021). DOI: 10.1016/j.foodcont.2020.107611
  14. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.W. Liu, C.H. Voon. Procedia Eng., 184, 469 (2017). DOI: 10.1016/j.proeng.2017.04.118
  15. A.P. Voznyakovskii, A.Yu. Neverovskaya, Ja.A. Otvalko, E.V. Gorelova, A.N. Zabelina. Nanosyst.: Phys., Chem., Math., 9 (1), 125 (2018). DOI: 10.17586/2220-8054-2018-9-1-125-128
  16. A.A. Vozniakovskii, A.P. Voznyakovskii, S.V. Kidalov, V.Yu. Osipov. J. Struct. Chem., 61 (5), 826 (2020). DOI: 10.1134/S0022476620050200
  17. A.G. Merzhanov, I.P. Borovinskaya. Int. J. Self-Propag. High-Temp. Synth., 17 (4), 242 (2008). DOI: 10.3103/S1061386208040079
  18. A.P. Voznyakovskii, G.N. Fursei, A.A. Voznyakovskii, M.A. Polyakov, A.Yu. Neverovskaya, I.I. Zakirov. Tech. Phys. Lett., 45 (5), 467 (2019). DOI: 10.1134/S1063785019050158
  19. A.A. Vozniakovskii, A.P. Vozniakovskii, S.V. Kidalov, J. Otvalko, A.Yu. Neverovskaia. J. Compos. Mater., 54 (23), 3351 (2020). DOI: 10.1177/0021998320914366
  20. B. Kianpour, A. Ebrahimi, Z. Salehi, Sh. Fatem. J. Chem. Petroleum Eng., 50 (2), 37 (2017)
  21. Sangiliyandi Gurunathan, Jae Woong Han, Eun Su Kim, Jung Hyun Park, Jin-Hoi Kim. Intern. J. Nanomedicine, 10, 2951 (2015)
  22. F.T. Johra, J.W. Lee, W.G. Jung, J. Ind. Eng. Chem., 20 (5), 2883 (2014). DOI: 10.1016/j.jiec.2013.11.022
  23. V.S. Kryukov, V.V. Krupin, A.N. Kotik. Veterinariya, 9, 28 (1992). (in Russian)
  24. K. Krishnamoorthy, M. Veerapandian, G.S. Kim, S. Jae Kim. Curr. Nanosci., 8 (6), 934 (2012). DOI: 10.2174/157341312803989088
  25. A. Abbasi Pirouz, R. Abedi Karjiban, F. Abu Bakar, J. Selamat. Toxins, 10 (9), 361 (2018). DOI: 10.3390/toxins10090361
  26. A.A. Pirouz, J. Selamat, S.Z. Iqbal, H. Mirhosseini, R.A. Karjiban, F.A. Bakar. Sci. Rep., 7 (1), 12453 (2017). DOI: 10.1038/s41598-017-12341-3

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru