Bagraev N.T.1,2, Golovin P.A.1, Klyachkin L.E.2, Malyarenko A.M.2, Presnukhina A.P.3, Reukov A.S.3, Khromov V.S.2
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3Almazov National Medical Research Center, St. Petersburg, Russia
Email: yellowcat0101@gmail.com
The results of the use of terahertz (THz) irradiation generated by a silicon nanosandwich under conditions of a stabilized source-drain current in the treatment of covid complications are presented. THz irradiation was used in addition to drug therapy for the treatment of patients with COVID-19, which made it possible to reduce the patient's stay in the intensive care unit, reduce the time of patient intubation and stay on mechanical ventilation, and reduce the radiological and pharmacological burden on the patient. An idea was obtained about the resonant response of a living biological tissue to THz irradiation, which made it possible to formulate requirements for irradiation parameters depending on the characteristics of the biological tissue under study. The characteristics of resonant frequencies for the pulmonary alveoli were determined, which made it possible to develop and use the proposed treatment method for the treatment of pneumonia caused by COVID-19. Keywords: silicon nanosandwich, quantum Faraday effect, terahertz irradiation, COVID-19.
- N.T. Bagraev, V.Yu. Grigoryev, L.E. Klyachkin, A.M. Malyarenko, V.A. Mashkov, V.V. Romanov. Semiconductors, 50 (8), 1025 (2016). DOI: 10.1134/S1063782616080273
- N.T. Bagraev, L.E. Klyachkin, A.M. Malyarenko, A.L. Chernev, A.K. Emel'yanov, M.V. Dubina. Semiconductors, 50 (9), 1208 (2016). DOI: 10.1134/S1063782616090037
- N.T. Bagraev, V.Yu. Grigoryev, L.E. Klyachkin, A.M. Malyarenko, V.A. Mashkov, N.I. Rul. Low Temperature Physics/Fizika Nizkikh Temperatur, 43, 132 (2017). DOI: 10.1063/1.4974190
- K.B. Taranets, M.A. Fomin, L.E. Klyachkin, A.M. Malyarenko, N.T. Bagraev. J. Appl. Phys., 125 (22), 225702 (2019). DOI: 10.1063/1.5083805
- K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer. Science, 315 (5817), 1379 (2007). DOI: 10.1126/science.1137201
- M.Z. Hasan, C.L. Kane. Rev. Modern Phys., 82 (4), 3045 (2010). DOI: 10.1103/RevModPhys.82.3045
- J. Klinovaja, P. Stano, A. Yazdani, D. Loss. Phys. Rev. Lett., 111 (5), 186805 (2013). DOI: 10.1103/PhysRevLett.111.056802
- A.A. Zyuzin, D. Loss. Phys. Rev. B: Condenc. Matter Mater. Phys., 90 (12), 125443 (2014). DOI: 10.1103/PhysRevB.90.125443
- N.T. Bagraev, L.E. Klyachkin, A.M. Malyarenko, B.A. Novikov. Biotekhnosfera, 5, 55 (2015) (in Russian)
- V.V.. Kirianova, E.N. Zharova, N.T. Bagraev, A.S. Reukov, S.V. Loginova. Fizioterapia. Balneologiya i reabilitatsiya, 15 (4), 209 (2016) (in Russian). DOI: 10.18821/1681-3456-2016-15-4-209-215
- E. Pickwell, B.E. Cole, A.J. Fitzgerald, M. Pepper, V.P. Wallace. Phys. Medicine Biology, 49 (9), 1595 (2004)
- A.L. Chernev, N.T. Bagraev, L.E. Klyachkin, A.K. Emelyanov, M.V. Dubina. Semiconductors, 49 (7), 944 (2015). DOI: 10.1134/S1063782615070064
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.