Analysis of the effect of yield stress on stress corrosion cracking of martensitic and ferritic steels in acidic environments
Petrov A. I. 1, Razuvaeva M. V. 1
1Ioffe Institute, St. Petersburg, Russia
Email: An.Petrov@mail.ioffe.ru, M.Razuvaeva@mail.ioffe.ru

PDF
To evaluate the effect of yield stress on hydrogen embrittlement (HE) of martensitic and ferritic steels, the effect of hydrogen (H) capture by structural inhomogeneities (hydrogen traps) and the effect of plastic deformation and stress on the mechanism of stress corrosion cracking (SCC) are considered. In the presence of hydrogen, the brittle fracture of high-strength martensitic steels consists of flat areas of intergranular fracture at the initial austenitic grain boundaries and quasi-brittle cracks at the boundaries of martensite blocks. In low-strength steels, brittle fracture manifests itself in the form of transgranular fracture of ferrite grains. The decrease in the characteristics of martensitic steels with an increase in the yield strength occurs due to an increase in the hydrogen concentration at the stage of anodic dissolution (AD) due to the growth of the carbide/matrix interface. The reason for the growth hydrogen concentration in ferritic steels is a large mechanical overstress, an increase in the number of active dissolution centers, the formation of an electrochemical pearlite-ferrite pair, and an increase in surface roughness with increasing deformation. It is concluded that the bell-shaped dependences of the critical stress of the transition from AD to SCC and other characteristics of mechanical tests on magnitude of the yield stress are due to different mechanisms of hydrogen accumulation in martensitic and ferritic steels. Keywords: hydrogen embrittlement, high-angle boundaries, interfaces, traps, hydrogen binding energy, structural inhomogeneities, fracture.
  1. A.I. Petrov, M.V. Razuvaeva. Tech. Phys., 65 (12), 2035 (2020). DOI: 10.1134/S106378422012021X
  2. A.R. Troiano. Trans. Am. Soc. Met., 52, 54 (1960). DOI: 10.1007/s13632-016-0319-4
  3. W.W. Gerberich, R.A. Oriani, M.-J. Lji, X. Chen, T. Foecke. Philosophical Magazine A, 63 (2), 363 (1991). DOI: 10.1080/01418619108204854
  4. R.A. Oriani. Corrosion, 43 (7), 390 (1987). DOI: 10.5006/1.3583875
  5. H.K. Birnbaum, P. Sofronis. Mater. Sci. Engineer. A, 176 (1-2), 191 (1994). DOI: 10.1016/0921-5093(94)90975-X
  6. M. Nagumo. ISIJ International, 41 (6), 590 (2001). DOI: 10.2355/isijinternational.41.590
  7. L. Jemblie, V. Olden, O.M. Akselsen. Intern. J. Hydrogen Energy, 42, 11980 (2017). DOI: 10.1016/j.ijhydene.2017.02.211
  8. R.L.S. Thomas, D. Li, R.P. Gangloff, J.R. Scully. Metallurgical and Mater. Transactions A, 33A, 1991 (2002). DOI: https://link.springer.com/article/10.1007/s11661-002-0032-6
  9. M. Dadfarnia, P. Sofronis, T. Neeraj. Intern. J. Hydrogen Energy, 36, 10141 (2011). DOI: 10.1016/j.ijhydene.2011.05.027
  10. H.K.D.H. Bhadeshia. ISIJ International, 56 (1), 24 (2016). DOI: 10.2355/isijinternational.ISIJINT-2015-430
  11. A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, R.O. Ritchie. J. Mechan. Phys. Solids, 112, 403 (2018). DOI: 10.1016/j.jmps.2017.12.016
  12. T. Doshida, K. Takai. Acta Mater., 79, 93 (2014). DOI: http://dx.doi.org/10.1016/j.actamat.2014.07.008
  13. T. Depover, E. Wallaert, K. Verbeken. Mater. Sci. Engineer. A, 664, 195 (2016). DOI: http://dx.doi.org/10.1016/j.msea.2016.03.107
  14. C.D. Kim, A.W. Loginow. Corrosion, 24 (10), 313 (1968). DOI: 10.5006/0010-9312-24.10.313
  15. T. Depover, K. Verbcfecn. Intern. J. Hydrogen Energy, 43, 3050 (2018). DOI: 10.1016/j.ijhydene.2017.12.109
  16. Q. Liu, Q. Zhou, J. Venezuela, M. Zhang, A. Atrens. Corrosion Sci., 125, 114 (2017). DOI: http://dx.doi.org/10.1016/j.corsci.2017.06.012
  17. M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis, l.M. Robertson. J. Mech. Phys. Solids, 78, 511 (2015). DOI: http://dx.doi.org/10.1016/j.jmps.2015.03.002
  18. H.K. Birnbaum, P. Sofronis. Mater. Sci. Engineer. A, 176 (1-2), 191 (1994). DOI: 10.1016/0921-5093(94)90975-X
  19. P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie. J. Mechan. Phys. Solids, 58, 206 (2010). DOI: 10.1016/j.jmps.2009.10.005
  20. M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, P. Sofronis. Acta Mater., 165, 734 (2019). DOI: 10.1016/j.actamat.2018.12.014
  21. F.G. Wei, K. Tsuzaki. Hydrogen Trapping Phenomena in Martensitic Steels, in book Gaseous HE of Materials in Energy Technologies, ed. by R.P. Gangloff, B.P. Somerday. (Woodhead Publishing Limited, 2012), v. 2, p. 493--525. DOI: 10.1533/9780857093899.3.493
  22. D. Guedes, L. Cupertino Malheiros, A. Oudriss, S. Cohendoz, J. Bouhattate, J.F. Thebault, M. Piette, X. Feaugas. Acta Mater., 186, 133 (2020). DOI: 10.1016/j.actamat.2019.12.045
  23. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson. Acta Mater., 60 (13-14), 5182 (2012). DOI: http://dx.doi.org/10.1016/j.actamat.2012.06.040
  24. I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren. Metall. Mater. Trans., 46A, 2323 (2015). DOI: https://link.springer.com/article/10.1007/s11661-015-2836-1
  25. A. Oudriss, A. Fleurentin, G. Courlit, E. Conforto, C. Berziou, C. Rebere, S. Cohendoz, J.M. Sobrino, J. Creus, X. Feaugas. Mater. Sci. Engineer.: A, 598, 420 (2014). DOI: 10.1016/j.msea.2014.01.039
  26. N. Nanninga, J. Grochowsi, L. Heldt, K. Rundman. Corrosion Sci., 52, 1237 (2010). DOI: 10.1016/j.corsci.2009.12.020
  27. L.B. Peral, A. Zafra, I. Ternandez-Pariente, C. Rodriguez, J. Belzunce. Intern. J. Hydrogen Energy, 45, 22054 (2020). DOI: 10.1016/j.ijhydene.2020.05.228
  28. L. Wang, J. Xin, L. Cheng, K. Zhao, B. Sun, J. Li, X. Wangh, Z. Cui. Corrosion Sci., 147, 108 (2019). DOI: 10.1016/j.corsci.2018.11.007
  29. Z.Y. Liu, X.G. Li, C.W. Du, L. Lu, Y.R. Zhang, Y.F. Cheng. Corrosion Sci., 51, 895 (2009). DOI: 10.1016/j.corsci.2009.01.007
  30. L. Zhiyong, C. Zhongyu, L. Xiaogang, D. Cuiwei, X. Yunying. Electrochem. Commun., 48, 127 (2014). DOI: 10.1016/j.elecom.2014.08.016
  31. A. Fragiel, S. Serna, J. Malo-Tamayo, P. Silva, B. Campillo, E. Martinez-Martinez, L. Cota, M.H. Staia, E.S. Puchi-Cabrera, R. Perez. Engineer. Failure Analysis, 105, 1055 (2019). DOI: 10.1016/j.engfailanal.2019.06.028
  32. T. Neeraj, R. Srinivasan, Ju Li. Acta Mater., 60, 5160 (2012). DOI: http://dx.doi.org/10.1016/j/actamat.2012.06.014
  33. M. Nagumo, K. Takai. Acta Mater., 165, 722 (2019). DOI: 10.1016/actamat.2018.12.013
  34. Z. Cui, Z. Liu, L. Wang, X. Li, C. Du, X. Wang. Mater. Sci. Engineer. A, 677, 259 (2016). DOI: 10.1016/j.msea.2016.09.033
  35. E.M. Gutman. Mechanochemistry of Materials (Cambridge Int Science Publishing, Cambridge, UK, 1998, 211 p.)
  36. L.Y. Xu, Y.F. Cheng. Corros. Sci., 64, 145 (2012). DOI: 10.1016/j.corsci.2012.07.012
  37. Z.Y. Liu, X.G. Li, C.W. Du, Y.F. Cheng. Corrosion Sci., 51, 2863 (2009). DOI: 10.1016/j.corsci.2009.08.019
  38. J. Dai, F. Chiang. J. Eng. Mater. Technol., 114, 432 (1992). DOI: 10.1115/1.2904196
  39. H. Krawiec, V. Vignal, E. Schwarzenboeck, J. Banas. Electrochim. Acta, 104, 400 (2013). DOI: 10.1016/j.electacta.2012.12.029
  40. B.E. Wilde. Corrosion, 27 (8), 326 (1971). DOI: 10.5006/0010-9312-27.8.326
  41. Corrosion, ed. by L.L. Shreir (Newnes-Butterworths, London, Boston) 632 p.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru