Analysis of the effect of yield stress on stress corrosion cracking of martensitic and ferritic steels in acidic environments
Petrov A. I.
1, Razuvaeva M. V.
11Ioffe Institute, St. Petersburg, Russia
Email: An.Petrov@mail.ioffe.ru, M.Razuvaeva@mail.ioffe.ru
To evaluate the effect of yield stress on hydrogen embrittlement (HE) of martensitic and ferritic steels, the effect of hydrogen (H) capture by structural inhomogeneities (hydrogen traps) and the effect of plastic deformation and stress on the mechanism of stress corrosion cracking (SCC) are considered. In the presence of hydrogen, the brittle fracture of high-strength martensitic steels consists of flat areas of intergranular fracture at the initial austenitic grain boundaries and quasi-brittle cracks at the boundaries of martensite blocks. In low-strength steels, brittle fracture manifests itself in the form of transgranular fracture of ferrite grains. The decrease in the characteristics of martensitic steels with an increase in the yield strength occurs due to an increase in the hydrogen concentration at the stage of anodic dissolution (AD) due to the growth of the carbide/matrix interface. The reason for the growth hydrogen concentration in ferritic steels is a large mechanical overstress, an increase in the number of active dissolution centers, the formation of an electrochemical pearlite-ferrite pair, and an increase in surface roughness with increasing deformation. It is concluded that the bell-shaped dependences of the critical stress of the transition from AD to SCC and other characteristics of mechanical tests on magnitude of the yield stress are due to different mechanisms of hydrogen accumulation in martensitic and ferritic steels. Keywords: hydrogen embrittlement, high-angle boundaries, interfaces, traps, hydrogen binding energy, structural inhomogeneities, fracture.
- A.I. Petrov, M.V. Razuvaeva. Tech. Phys., 65 (12), 2035 (2020). DOI: 10.1134/S106378422012021X
- A.R. Troiano. Trans. Am. Soc. Met., 52, 54 (1960). DOI: 10.1007/s13632-016-0319-4
- W.W. Gerberich, R.A. Oriani, M.-J. Lji, X. Chen, T. Foecke. Philosophical Magazine A, 63 (2), 363 (1991). DOI: 10.1080/01418619108204854
- R.A. Oriani. Corrosion, 43 (7), 390 (1987). DOI: 10.5006/1.3583875
- H.K. Birnbaum, P. Sofronis. Mater. Sci. Engineer. A, 176 (1-2), 191 (1994). DOI: 10.1016/0921-5093(94)90975-X
- M. Nagumo. ISIJ International, 41 (6), 590 (2001). DOI: 10.2355/isijinternational.41.590
- L. Jemblie, V. Olden, O.M. Akselsen. Intern. J. Hydrogen Energy, 42, 11980 (2017). DOI: 10.1016/j.ijhydene.2017.02.211
- R.L.S. Thomas, D. Li, R.P. Gangloff, J.R. Scully. Metallurgical and Mater. Transactions A, 33A, 1991 (2002). DOI: https://link.springer.com/article/10.1007/s11661-002-0032-6
- M. Dadfarnia, P. Sofronis, T. Neeraj. Intern. J. Hydrogen Energy, 36, 10141 (2011). DOI: 10.1016/j.ijhydene.2011.05.027
- H.K.D.H. Bhadeshia. ISIJ International, 56 (1), 24 (2016). DOI: 10.2355/isijinternational.ISIJINT-2015-430
- A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, R.O. Ritchie. J. Mechan. Phys. Solids, 112, 403 (2018). DOI: 10.1016/j.jmps.2017.12.016
- T. Doshida, K. Takai. Acta Mater., 79, 93 (2014). DOI: http://dx.doi.org/10.1016/j.actamat.2014.07.008
- T. Depover, E. Wallaert, K. Verbeken. Mater. Sci. Engineer. A, 664, 195 (2016). DOI: http://dx.doi.org/10.1016/j.msea.2016.03.107
- C.D. Kim, A.W. Loginow. Corrosion, 24 (10), 313 (1968). DOI: 10.5006/0010-9312-24.10.313
- T. Depover, K. Verbcfecn. Intern. J. Hydrogen Energy, 43, 3050 (2018). DOI: 10.1016/j.ijhydene.2017.12.109
- Q. Liu, Q. Zhou, J. Venezuela, M. Zhang, A. Atrens. Corrosion Sci., 125, 114 (2017). DOI: http://dx.doi.org/10.1016/j.corsci.2017.06.012
- M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis, l.M. Robertson. J. Mech. Phys. Solids, 78, 511 (2015). DOI: http://dx.doi.org/10.1016/j.jmps.2015.03.002
- H.K. Birnbaum, P. Sofronis. Mater. Sci. Engineer. A, 176 (1-2), 191 (1994). DOI: 10.1016/0921-5093(94)90975-X
- P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie. J. Mechan. Phys. Solids, 58, 206 (2010). DOI: 10.1016/j.jmps.2009.10.005
- M.L. Martin, M. Dadfarnia, A. Nagao, S. Wang, P. Sofronis. Acta Mater., 165, 734 (2019). DOI: 10.1016/j.actamat.2018.12.014
- F.G. Wei, K. Tsuzaki. Hydrogen Trapping Phenomena in Martensitic Steels, in book Gaseous HE of Materials in Energy Technologies, ed. by R.P. Gangloff, B.P. Somerday. (Woodhead Publishing Limited, 2012), v. 2, p. 493--525. DOI: 10.1533/9780857093899.3.493
- D. Guedes, L. Cupertino Malheiros, A. Oudriss, S. Cohendoz, J. Bouhattate, J.F. Thebault, M. Piette, X. Feaugas. Acta Mater., 186, 133 (2020). DOI: 10.1016/j.actamat.2019.12.045
- A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson. Acta Mater., 60 (13-14), 5182 (2012). DOI: http://dx.doi.org/10.1016/j.actamat.2012.06.040
- I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren. Metall. Mater. Trans., 46A, 2323 (2015). DOI: https://link.springer.com/article/10.1007/s11661-015-2836-1
- A. Oudriss, A. Fleurentin, G. Courlit, E. Conforto, C. Berziou, C. Rebere, S. Cohendoz, J.M. Sobrino, J. Creus, X. Feaugas. Mater. Sci. Engineer.: A, 598, 420 (2014). DOI: 10.1016/j.msea.2014.01.039
- N. Nanninga, J. Grochowsi, L. Heldt, K. Rundman. Corrosion Sci., 52, 1237 (2010). DOI: 10.1016/j.corsci.2009.12.020
- L.B. Peral, A. Zafra, I. Ternandez-Pariente, C. Rodriguez, J. Belzunce. Intern. J. Hydrogen Energy, 45, 22054 (2020). DOI: 10.1016/j.ijhydene.2020.05.228
- L. Wang, J. Xin, L. Cheng, K. Zhao, B. Sun, J. Li, X. Wangh, Z. Cui. Corrosion Sci., 147, 108 (2019). DOI: 10.1016/j.corsci.2018.11.007
- Z.Y. Liu, X.G. Li, C.W. Du, L. Lu, Y.R. Zhang, Y.F. Cheng. Corrosion Sci., 51, 895 (2009). DOI: 10.1016/j.corsci.2009.01.007
- L. Zhiyong, C. Zhongyu, L. Xiaogang, D. Cuiwei, X. Yunying. Electrochem. Commun., 48, 127 (2014). DOI: 10.1016/j.elecom.2014.08.016
- A. Fragiel, S. Serna, J. Malo-Tamayo, P. Silva, B. Campillo, E. Martinez-Martinez, L. Cota, M.H. Staia, E.S. Puchi-Cabrera, R. Perez. Engineer. Failure Analysis, 105, 1055 (2019). DOI: 10.1016/j.engfailanal.2019.06.028
- T. Neeraj, R. Srinivasan, Ju Li. Acta Mater., 60, 5160 (2012). DOI: http://dx.doi.org/10.1016/j/actamat.2012.06.014
- M. Nagumo, K. Takai. Acta Mater., 165, 722 (2019). DOI: 10.1016/actamat.2018.12.013
- Z. Cui, Z. Liu, L. Wang, X. Li, C. Du, X. Wang. Mater. Sci. Engineer. A, 677, 259 (2016). DOI: 10.1016/j.msea.2016.09.033
- E.M. Gutman. Mechanochemistry of Materials (Cambridge Int Science Publishing, Cambridge, UK, 1998, 211 p.)
- L.Y. Xu, Y.F. Cheng. Corros. Sci., 64, 145 (2012). DOI: 10.1016/j.corsci.2012.07.012
- Z.Y. Liu, X.G. Li, C.W. Du, Y.F. Cheng. Corrosion Sci., 51, 2863 (2009). DOI: 10.1016/j.corsci.2009.08.019
- J. Dai, F. Chiang. J. Eng. Mater. Technol., 114, 432 (1992). DOI: 10.1115/1.2904196
- H. Krawiec, V. Vignal, E. Schwarzenboeck, J. Banas. Electrochim. Acta, 104, 400 (2013). DOI: 10.1016/j.electacta.2012.12.029
- B.E. Wilde. Corrosion, 27 (8), 326 (1971). DOI: 10.5006/0010-9312-27.8.326
- Corrosion, ed. by L.L. Shreir (Newnes-Butterworths, London, Boston) 632 p.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.