Boldin M. S.1, Popov A. A.1, Murashov A. A.1, Sakharov S. V.1, Shotin S.V.1, Nokhrin A. V.1, Chuvil’deev V. N.1, Smetanina K. E.1, Tabachkova N. Yu.2,3
1Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
2National University of Science and Technology MISiS, Moscow, Russia
3Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: boldin@nifti.unn.ru
The features of spark plasma sintering of submicron Al2O3 powders with different contents (0, 0.5, 1.5, 5 vol.%) of β-SiC nanoparticles have been studied. The microstructure and hardness of Al2O3 + 5 vol.% SiC ceramics obtained by sintering Al2O3 powders with β-SiC particles of various types (nanoparticles, submicron particles, fibers) have been studied. Sintering was carried out at heating rates (Vh) from 10 to 700oC/min. The sintering process of Al2O3 + SiC ceramics with low heating rates (V_h=10-50oC/min) has a complex three-stage character, with a flat area in the temperature range of 1200-1300oC. At high heating rates (V_h>250oC/min), the usual three-stage character of sintering is observed. The analysis of temperature dependences of compaction was carried out using the Young-Cutler model; It was found that the kinetics of powder sintering is limited by the intensity of grain boundary diffusion. It is shown that the dependence of the hardness of Al2O3 + SiC ceramics on Vh has a nonmonotonic character, with a maximum. In the case of pure alumina, an increase in Vh leads to a monotonic decrease in hardness Keywords: Alumina, silicon carbide, density, diffusion, hardness.
- Z. Yin, S. Yan, J. Ye, Z. Zhu, J. Yuan. Ceramics Int., 45 (13), 16113 (2019). DOI: 10.1016/j.ceramint.2019.05.128
- E. Gevorkyan, A. Mamalis, R. Vovk, Z. Semiatkowkski, D. Morozow, V. Nerubatskyi, O. Morozova. JINST, 16, P10015 (2021). DOI: 10.1088/1748-0221/16/10/P10015
- M.S. Boldin, N.N. Berendeev, N.V. Melekhin, A.A. Popov, A.V. Nokhrin, V.N. Chuvil'deev. Ceramics Int., 47 (18), 25201 (2021). DOI: 10.1016/j.ceramint.2021.06.066
- J.H. Chae, K.H. Kim, Y.H. Choa, J. Matsushita, J.-W. Yoon, K.B. Shim. J. Alloys Compd., 413 (1--2), 259 (2006). DOI: 10.1016/j.jallcom.2005.05.049
- I. Monohjimoh, M.A. Hussein, N. Al-Aqeeli. Nanomaterials, 9 (1), 86 (2019). DOI: 10.3390/nano9010086
- X.L. Shi, F.M. Xu, Z.J. Zhang, Y.L. Dong, Y. Tan, L. Wang, J.M. Yang. Mater. Sci. Eng. A., 527 (18--19), 4646 (2010). DOI: 10.1016/j.msea.2010.03.035
- Y.L. Dong, F.M. Xu, X.L. Shi, C. Zhang, Z.J. Zhang, J.M. Yang, Y. Tan. Mater. Sci. Eng. A, 504 (1--2), 49 (2009). DOI: 10.1016/j.msea.2008.10.021
- J. Liu, Z. Li, H. Yan, K. Jiang. Adv. Eng. Mater., 16 (9), 1111 (2014). DOI: 10.1002/adem.201300536
- Y. Xu, A. Zangvil, A. Kerber. J. Eur. Cer. Soc., 17 (7), 921 (1997). DOI: 10.1016/S0955-2219(96)00164-1
- S. Gustafsson, L.K.L. Falk, E. Liden, E. Carlstrom. Ceramics Int., 34 (7), 1609 (2008). DOI: 10.1016/j.ceramint.2007.05.005
- D. Galusek, R. Klement, J. Sedlav cek, M. Balog, C. Fasel, J. Zhang, M.A. Crimp, R. Riedel. J. Eur. Cer. Soc., 31 (1--2), 111 (2011). DOI: 10.1016/j.jeurceramsoc.2010.09.013
- C.C. Anya, S.G. Roberts. J. Eur. Cer. Soc., 17 (4), 565 (1997). DOI: 10.1016/S0955-2219(96)00092-1
- M. Tokita. Ceramics, 4 (2), 160 (2021). DOI: 10.3390/ceramics4020014
- L. Gao, H.Z. Wang, J.S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa, S.D.D.L. Torre. J. Eur. Cer. Soc., 19 (5), 609 (1999). DOI: 10.1016/S0955-2219(98)00232-5
- I. Alvarez, R. Torrecillas, W. Solis, P. Peretyagin, A. Fernandez. Ceramics Int., 42 (15), 17248 (2016). DOI: 10.1016/j.ceramint.2016.08.019
- V.N. Chuvil'deev, M.S. Boldin, Ya.G. Dyatlova, V.I. Rumyantsev, S.S. Ordan'yan. Rus. J. Inorg. Chem., 60 (8), 987 (2015). DOI: 10.1134/S0036023615080057
- M.N. Rahaman. Ceramic Processing and Sintering (Marcel Dekker Inc., NY., 2003)
- W.S. Young, I.B. Culter. J. Am. Ceramic Soc., 53 (12), 659 (1970). DOI: 10.1111/j.1151-2916.1970.tb12036.x
- M.S. Boldin, A.A. Popov, E.A. Lantsev, A.V. Nokhrin, V.N. Chuvil'deev. Materials, 15 (6), 2167 (2022). DOI: 10.3390/ma15062167
- H.J. Frost, M.F. Ashby. Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982)
- E.A. Lantsev, N.V. Malekhonova, Y.V. Tsvetkov, Y.V. Blagoveshchensky, V.N. Chuvil'deev, A.V. Nokhrin, M.S. Boldin, P.V. Andreev, K.E. Smetanina, N.V. Isaeva. Inorganic Mater.: Appl. Res., 12 (3), 650 (2021). DOI: 10.1134/S2075113321030242
- A. Bokov, A. Shelyug, A. Kurlov. J. Eur. Cer. Soc., 41 (12), 5801 (2021). DOI: 10.1016/j.jeurceramsoc.2021.05.007
- D. Fan, L.-Q. Chen, S.-P.P. Chen. J. Am. Ceramic Soc., 81 (3) 526 (1998). DOI: 10.1111/j.1151-2916.1998.tb02370.x
- V.I. Betekhtin, A.G. Kadomtsev, A.Yu. Kipyatkova, A.M. Glezer. Phys. Solid State, 40 (1), 74 (1998). DOI: 10.1134/1.1130237
- V.N. Chuvildeev. Neravnovesnye granitsy zeren v metallakh. Teoriya i prilozheniya (Fizmatlit, M., 2004) (in Russian)
- A.B. Mazitov, A.R. Oganov. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 150 (5), 92 (2021). DOI: 10.31857/S086960552105004X
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.