Spark Plasma Sintering of Al2O_3-SiC ceramics. Study of the Microstructure and Properties
Boldin M. S.1, Popov A. A.1, Murashov A. A.1, Sakharov S. V.1, Shotin S.V.1, Nokhrin A. V.1, Chuvil’deev V. N.1, Smetanina K. E.1, Tabachkova N. Yu.2,3
1Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia
2National University of Science and Technology MISiS, Moscow, Russia
3Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: boldin@nifti.unn.ru

PDF
The features of spark plasma sintering of submicron Al2O3 powders with different contents (0, 0.5, 1.5, 5 vol.%) of β-SiC nanoparticles have been studied. The microstructure and hardness of Al2O3 + 5 vol.% SiC ceramics obtained by sintering Al2O3 powders with β-SiC particles of various types (nanoparticles, submicron particles, fibers) have been studied. Sintering was carried out at heating rates (Vh) from 10 to 700oC/min. The sintering process of Al2O3 + SiC ceramics with low heating rates (V_h=10-50oC/min) has a complex three-stage character, with a flat area in the temperature range of 1200-1300oC. At high heating rates (V_h>250oC/min), the usual three-stage character of sintering is observed. The analysis of temperature dependences of compaction was carried out using the Young-Cutler model; It was found that the kinetics of powder sintering is limited by the intensity of grain boundary diffusion. It is shown that the dependence of the hardness of Al2O3 + SiC ceramics on Vh has a nonmonotonic character, with a maximum. In the case of pure alumina, an increase in Vh leads to a monotonic decrease in hardness Keywords: Alumina, silicon carbide, density, diffusion, hardness.
  1. Z. Yin, S. Yan, J. Ye, Z. Zhu, J. Yuan. Ceramics Int., 45 (13), 16113 (2019). DOI: 10.1016/j.ceramint.2019.05.128
  2. E. Gevorkyan, A. Mamalis, R. Vovk, Z. Semiatkowkski, D. Morozow, V. Nerubatskyi, O. Morozova. JINST, 16, P10015 (2021). DOI: 10.1088/1748-0221/16/10/P10015
  3. M.S. Boldin, N.N. Berendeev, N.V. Melekhin, A.A. Popov, A.V. Nokhrin, V.N. Chuvil'deev. Ceramics Int., 47 (18), 25201 (2021). DOI: 10.1016/j.ceramint.2021.06.066
  4. J.H. Chae, K.H. Kim, Y.H. Choa, J. Matsushita, J.-W. Yoon, K.B. Shim. J. Alloys Compd., 413 (1--2), 259 (2006). DOI: 10.1016/j.jallcom.2005.05.049
  5. I. Monohjimoh, M.A. Hussein, N. Al-Aqeeli. Nanomaterials, 9 (1), 86 (2019). DOI: 10.3390/nano9010086
  6. X.L. Shi, F.M. Xu, Z.J. Zhang, Y.L. Dong, Y. Tan, L. Wang, J.M. Yang. Mater. Sci. Eng. A., 527 (18--19), 4646 (2010). DOI: 10.1016/j.msea.2010.03.035
  7. Y.L. Dong, F.M. Xu, X.L. Shi, C. Zhang, Z.J. Zhang, J.M. Yang, Y. Tan. Mater. Sci. Eng. A, 504 (1--2), 49 (2009). DOI: 10.1016/j.msea.2008.10.021
  8. J. Liu, Z. Li, H. Yan, K. Jiang. Adv. Eng. Mater., 16 (9), 1111 (2014). DOI: 10.1002/adem.201300536
  9. Y. Xu, A. Zangvil, A. Kerber. J. Eur. Cer. Soc., 17 (7), 921 (1997). DOI: 10.1016/S0955-2219(96)00164-1
  10. S. Gustafsson, L.K.L. Falk, E. Liden, E. Carlstrom. Ceramics Int., 34 (7), 1609 (2008). DOI: 10.1016/j.ceramint.2007.05.005
  11. D. Galusek, R. Klement, J. Sedlav cek, M. Balog, C. Fasel, J. Zhang, M.A. Crimp, R. Riedel. J. Eur. Cer. Soc., 31 (1--2), 111 (2011). DOI: 10.1016/j.jeurceramsoc.2010.09.013
  12. C.C. Anya, S.G. Roberts. J. Eur. Cer. Soc., 17 (4), 565 (1997). DOI: 10.1016/S0955-2219(96)00092-1
  13. M. Tokita. Ceramics, 4 (2), 160 (2021). DOI: 10.3390/ceramics4020014
  14. L. Gao, H.Z. Wang, J.S. Hong, H. Miyamoto, K. Miyamoto, Y. Nishikawa, S.D.D.L. Torre. J. Eur. Cer. Soc., 19 (5), 609 (1999). DOI: 10.1016/S0955-2219(98)00232-5
  15. I. Alvarez, R. Torrecillas, W. Solis, P. Peretyagin, A. Fernandez. Ceramics Int., 42 (15), 17248 (2016). DOI: 10.1016/j.ceramint.2016.08.019
  16. V.N. Chuvil'deev, M.S. Boldin, Ya.G. Dyatlova, V.I. Rumyantsev, S.S. Ordan'yan. Rus. J. Inorg. Chem., 60 (8), 987 (2015). DOI: 10.1134/S0036023615080057
  17. M.N. Rahaman. Ceramic Processing and Sintering (Marcel Dekker Inc., NY., 2003)
  18. W.S. Young, I.B. Culter. J. Am. Ceramic Soc., 53 (12), 659 (1970). DOI: 10.1111/j.1151-2916.1970.tb12036.x
  19. M.S. Boldin, A.A. Popov, E.A. Lantsev, A.V. Nokhrin, V.N. Chuvil'deev. Materials, 15 (6), 2167 (2022). DOI: 10.3390/ma15062167
  20. H.J. Frost, M.F. Ashby. Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982)
  21. E.A. Lantsev, N.V. Malekhonova, Y.V. Tsvetkov, Y.V. Blagoveshchensky, V.N. Chuvil'deev, A.V. Nokhrin, M.S. Boldin, P.V. Andreev, K.E. Smetanina, N.V. Isaeva. Inorganic Mater.: Appl. Res., 12 (3), 650 (2021). DOI: 10.1134/S2075113321030242
  22. A. Bokov, A. Shelyug, A. Kurlov. J. Eur. Cer. Soc., 41 (12), 5801 (2021). DOI: 10.1016/j.jeurceramsoc.2021.05.007
  23. D. Fan, L.-Q. Chen, S.-P.P. Chen. J. Am. Ceramic Soc., 81 (3) 526 (1998). DOI: 10.1111/j.1151-2916.1998.tb02370.x
  24. V.I. Betekhtin, A.G. Kadomtsev, A.Yu. Kipyatkova, A.M. Glezer. Phys. Solid State, 40 (1), 74 (1998). DOI: 10.1134/1.1130237
  25. V.N. Chuvildeev. Neravnovesnye granitsy zeren v metallakh. Teoriya i prilozheniya (Fizmatlit, M., 2004) (in Russian)
  26. A.B. Mazitov, A.R. Oganov. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva (Proceedings of the Russian Mineralogical Society), 150 (5), 92 (2021). DOI: 10.31857/S086960552105004X

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru