Investigation of the noise characteristics of vertical-cavity surface-emitting laser with a rhomboidal oxide current aperture for use in a Cs-based compact atomic magnetometer
Bobrov M. A. 1, Blokhin S. A. 1, Maleev N. A. 1, Kuzmenkov A. G. 2, Blokhin A. A. 1, Vasilyev A. P. 2, Kulagina M. M. 1, Pazgalev A. S. 1, Novikov I. I. 3, Karachinsky L. Ya. 4, Ustinov V. M. 2
1Ioffe Institute, St. Petersburg, Russia
2Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences, St. Petersburg, Russia
3 ITMO University, St. Petersburg, Russia
4Connector Optics LLC, St. Petersburg, Russia
Email: bobrov.mikh@gmail.com, blokh@mail.iioffe.ru, Maleev@beam.ioffe.ru, kuzmenkov@mail.ioffe.ru, bloalex91@yandex.ru, vasiljev@mail.ioffe.ru, Marina.Kulagina@mail.ioffe.ru, Anatoly.Pazgalev@mail.ioffe.ru, Novikov@connector-optics.com, leonid.karachinsky@connector-optics.com, vmust@beam.ioffe.ru

PDF
The possibility of using vertical-emitting lasers with intracavity contacts (IC-VCSEL) and a rhomboidal oxide current aperture for creating a non-zero magnetic field optically pumped atomic magnetometers (OPM) with a 133Cs vapor cell for magnetoencephalographic (MEG) systems were demonstrated. Relative intensity noise (RIN) and polarization resolved RIN of the IC-VCSEL in the 895 nm range with different mirror losses (linewidth) in the frequency range from 1 Hz to 100 kHz were experimentally investigated. Lasers with low mirror loss (narrow linewidth) have polarization resolved RIN comparable to amplitude noise. For IC-VCSEL with an output optical power of 0.8 mW and a linewidth of 55 MHz, the noise level measured is 148 dB/Hz in 1 Hz bandwidth at 40 kHz frequency. The ultimate sensitivity of OPM based on two-beam MZ-scheme with studied VCSELs was estimated as ~ 11 fT/sqrt(Hz)sqrt. Keywords: vertical-cavity surface-emitting laser (VCSEL), magnetoencephalographic (MEG) systems, optically pumped atomic magnetometers (OPAM), relative intensity noise (RIN), polarization-resolved RIN.
  1. M. Hamalainen, R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa, Rev. Mod. Phys., 65 (2), 413 (1993). DOI: 10.1103/RevModPhys.65.413
  2. Magnetoencephalography, ed. by S. Supek, C. Aine (Springer, Cham, 2019). DOI: 10.1007/978-3-030-00087-5_1
  3. I.M. Savukov, M.V. Romalis, Phys. Rev. Lett., 94 (12), 123001 (2005). DOI: 10.1103/PhysRevLett.94.123001
  4. E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah, S.S. Meyer, L.D. Munoz, K.J. Mullinger, T.M. Tierney, S. Bestmann, G.R. Barnes, R. Bowtell, M.J. Brookes, Nature, 555 (7698), 657 (2018). DOI: 10.1038/nature26147
  5. A. Ossadtchi, N. Kulachenkov, D. Chuchelov, A. Pazgalev, M. Petrenko, A. Vershovskii, in Proc. of Int. Conf. Laser Optics (IEEE, N.Y., 2018), p. 543. DOI: 10.1109/LO.2018.8435740
  6. W.E. Bell, A.L. Bloom, Phys. Rev., 107 (6), 1559 (1957). DOI: 10.1103/PhysRev.107.1559
  7. N.D. Bhaskar, J. Camparo, W. Happer, A. Sharma, Phys. Rev. A, 23 (6), 3048 (1981). DOI: 10.1103/PhysRevA.23.3048
  8. J. Kitching, Appl. Phys. Rev., 5 (3), 031302 (2018). DOI: 10.1063/1.5026238
  9. F. Gruet, A. Al-Samaneh, E. Kroemer, L. Bimboes, D. Miletic, C. Affolderbach, D. Wahl, R. Boudot, G. Mileti, R. Michalzik, Opt. Express, 21 (5), 5781 (2013). DOI: 10.1364/OE.21.005781
  10. VCSELs for cesium-based miniaturized atomic clocks, ed. by A. Al-Samaneh (Books on Demand, 2015). DOI: 10.18725/OPARU-3205
  11. S.A. Blokhin, N.A. Maleev, M.A. Bobrov, A.G. Kuz'menkov, A.P. Vasil'ev, Yu.M. Zadiranov, M.M. Kulagina, A.A. Blokhin, Yu.A. Guseva, A.M. Ospennikov, M.V. Petrenko, A.G. Gladyshev, A.Yu. Egorov, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, V.M. Ustinov, Quantum Electron., 49 (2), 187 (2019). DOI: 10.1070/QEL16871
  12. M.A. Bobrov, N.A. Maleev, S.A. Blokhin, A.G. Kuzmenkov, A.P. Vasil'ev, A.A. Blokhin, M.M. Kulagina, Yu.A. Guseva, S.I. Troshkov, V.M. Ustinov, J. Phys.: Conf. Ser., 741, 012078 (2016). DOI: 10.1088/1742-6596/741/1/012078
  13. S.A. Blokhin, M.A. Bobrov, A.G. Kuz'menkov, A.A. Blokhin, A.P. Vasil'ev, Yu.A. Guseva, M.M. Kulagina, Yu.M. Zadiranov, N.A. Maleev, I.I. Novikov, L.Ya. Karachinsky, N.N. Ledentsov, V.M. Ustinov, Tech. Phys. Lett., 44 (1), 28 (2018). DOI: 10.1134/S1063785018010042
  14. E. Kroemer, J. Rutkowski, V. Maurice, R. Vicarini, M.A. Hafiz, C. Gorecki, R. Boudot, Appl. Opt., 55 (31), 8839 (2016). DOI: 10.1364/AO.55.008839
  15. D. Budker, M. Romalis, Nature Phys., 3 (4), 227 (2007). DOI: 10.1038/nphys566
  16. M.A. Bobrov, S.A. Blokhin, N.A. Maleev, A.A. Blokhin, A.P. Vasil'ev, A.G. Kuzmenkov, A.S. Pazgalev, M.V. Petrenko, S.P. Dmitriev, A.K. Vershovskii, V.M. Ustinov, I.I. Novikov, L.Ya. Karachinskii, J. Phys.: Conf. Ser., 1697, 012175 (2020). DOI: 10.1088/1742-6596/1697/1/012175
  17. R. Zhang, R. Mhaskar, K. Smith, M. Prouty, Appl. Phys. Lett., 116 (14), 143501 (2020). DOI: 10.1063/5.0004746

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru