Experimental study of heat transfer in thin-film perovskite-based structures using a low-coherent tandem interferometry
Travkin V. V.1,2, Koptyaev A. I.2, Pakhomov G. L.1,2, Volkov P. V.1, Semikov D. A.1,2, Luk’yanov A. Yu. 1
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
Email: trav@ipmras.ru

PDF
The heat transfer in an archetypal system solar cell/environment was analyzed, in which the solar cell was a thin-film multilayer structure with a hybrid lead-iodide perovskite photoabsorber. The temperature field was mathematically modeled and heat maps of the cell at various irradiation intensities were calculated. It was found that the heating by a diffuse insolation does not exceed the threshold critical for the stability of the perovskite phase owing to dissipation into the environment, with the temperature maximum close to half of the overall thickness of the structure. Keywords: perovskite, thin film, heat transfer, solar cells, diffuse insolation.
  1. N. Torabi, A. Behjat, Y. Zhou, P. Docampo, R.J. Stoddard, H.W. Hillhouse, T. Ameri, Mater. Today Energy, 12, 70 (2019). DOI: 10.1016/j.mtener.2018.12.009
  2. E.J. Juarez-Perez, Z. Hawash, S.R. Raga, L.K. Ono, Y.B. Qi, Energy Environ. Sci., 9 (11), 3406 (2016). DOI: 10.1039/C6EE02016J
  3. A.F. Akbulatov, M.I. Ustinova, G.V. Shilov, N.N. Dremova, I.S. Zhidkov, E.Z. Kurmaev, L.A. Frolova, A.F. Shestakov, S.M. Aldoshin, P.A. Troshin, J. Phys. Chem. Lett., 12 (18), 4362 (2021). DOI: 10.1021/acs.jpclett.1c00883
  4. M.N. Drozdov, P.A. Yunin, V.V. Travkin, A.I. Koptyaev, G.L. Pakhomov, Adv. Mater. Interfaces, 6 (12), 1900364 (2019). DOI: 10.1002/admi.201900364
  5. V.V. Travkin, P.A. Yunin, A.N. Fedoseev, A.I. Okhapkin, Y.I. Sachkov, G.L. Pakhomov, Solid State Sci., 99, 106051 (2020). DOI: 10.1016/j.solidstatesciences.2019.106051
  6. Q. Xiao, C. Zhan, Y. You, L. Tong, R. Wei, X. Liu, Mater. Lett., 227, 33 (2018). DOI: 10.1016/j.matlet.2018.05.035
  7. O. Kamoun, A. Mami, M.A. Amara, R. Vidu, M. Amlouk, Micromachines, 10 (2), 138 (2019). DOI: 10.3390/mi10020138
  8. P.V. Volkov, A.V. Goryunov, D.N. Lobanov, A.Y. Lukyanov, A.V. Novikov, A.D. Tertyshnik, M.V. Shaleev, D.V. Yurasov, J. Cryst. Growth, 448, 89 (2016). DOI: 10.1016/j.jcrysgro.2016.05.029
  9. A.G. Boldyreva, I.S. Zhidkov, S. Tsarev, A.F. Akbulatov, M.M. Tepliakova, Y.S. Fedotov, S.I. Bredikhin, E.Y. Postnova, S.Y. Luchkin, E.Z. Kurmaev, K.J. Stevenson, P.A. Troshin, ACS Appl. Mater. Interfaces, 12 (16), 19161 (2020). DOI: 10.1021/acsami.0c01027
  10. A. Kumar, U. Bansode, S. Ogale, A. Rahman, Nanotechnology, 31 (36), 365403 (2020). DOI: 10.1088/1361-6528/ab97d4

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru