Synthesis of Au/Si nanostructures by STM lithography
Lebedev D. V.1,2,3, Shkoldin V. A.1,4, Mozharov A. M.2, Petukhov A. E.2, Golubok A. O.3, Arkhipov A. V.5, Mukhin I. S.1,5, Dubrovsky V. G.2
1Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
4 ITMO University, St. Petersburg, Russia
5Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: Denis.v.lebedev@gmail.com

PDF
A technique for synthesizing nanostructures by current lithography in a scanning tunneling microscope (STM lithography) in layered Au/Si structures has been developed. An experimental dependence of the geometric dimensions of the created nanostructures on the time of current STM lithography has been obtained. A theoretical model for the growth of nanostructures is proposed, which explains the nonlinear dependence of the radius of the obtained nanostructures on time with saturation in the region of large radii. Keywords: Au/Si nanostructures, STM lithography, growth rate, modeling.
  1. J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, B. Hecht, Nature Photon., 9, 582 (2015). DOI: 10.1038/nphoton.2015.141
  2. W. Du, T. Wang, H.-S. Chu, C.A. Nijhuis, Nature Photon., 11, 623 (2017). DOI: 10.1038/s41566-017-0003-5
  3. H.-S. Ee, Y.-S. No, J. Kim, H.-G. Park, M.-K Seo, Opt. Lett., 43, 2889 (2018). DOI: 10.1364/OL.43.002889
  4. Y. Fang, M. Sun, Light: Sci. Appl., 4, e294 (2015). DOI: 10.1038/lsa.2015.67
  5. A. Liu, P. Wolf, J.A. Lott, D. Bimberg, Photon. Res., 7, 121 (2019). DOI: 10.1364/PRJ.7.000121
  6. D. Liang, J.E. Bowers, Nature Photon., 4, 511 (2010). DOI: 10.1038/nphoton.2010.167
  7. A.S. Polushkin, E.Y. Tiguntseva, A.P. Pushkarev, S.V. Makarov, Nanophotonics, 9, 599 (2020). DOI: 10.1515/nanoph-2019-0443
  8. J. Lambe, S.L. McCarthy, Phys. Rev. Lett., 37, 923 (1976). DOI: 10.1103/PhysRevLett.37.923
  9. D.V. Lebedev, A.M. Mozharov, A.D. Bolshakov, V.A. Shkoldin, D.V. Permyakov, A.O. Golubok, A.K. Samusev, I.S. Mukhin, Phys. Status Solidi (RRL), 14, 1900607 (2020). DOI: 10.1002/pssr.201900607
  10. S.W. Hla, Rep. Prog. Phys., 77, 056502 (2014). DOI: 10.1088/0034-4885/77/5/056502
  11. S.W. Hla, J. Vac. Sci. Technol., 23, 1351 (2005). DOI: 10.1116/1.1990161
  12. Z. Klusek, A. Busiakiewicz, P.K. Datta, R. Schmidt, W. Kozlowski, P. Kowalczyk, P. Dabrowski, W. Olejniczak, Surf. Sci., 601, 1513 (2007). DOI: 10.101/j.susc.2007.01.011
  13. V.M. Kornilov, A.N. Lachinov, Microelectron. Eng., 69, 399 (2003). DOI: 10.1016/S0167-9317(03)00327-7
  14. S. Kondo, S. Heike, M. Lutwyche, Y. Wada, J. Appl. Phys., 78, 155 (1995). DOI: 10.1063/1.360733
  15. S.V. Makarov, I.S. Sinev, V.A. Milichko, F.E. Komissarenko, D.A. Zuev, E.V. Ushakova, I.S. Mukhin, Y.F. Yu, A.I. Kuznetsov, P.A. Belov, I.V. Iorsh, A.N. Poddubny, A.K. Samusev, Yu.S. Kivshar, Nano Lett., 18, 535 (2018). DOI: 10.1021/acs.nanolett.7b04542
  16. S.A. Kukushkin, A.V. Osipov, Prog. Surf. Sci., 151, 1 (1996). DOI: 10.1016/0079-6816(96)82931-5
  17. V.G. Dubrovskii, J. Chem. Phys., 131, 164514 (2009). DOI: 10.1063/1.3254384
  18. V.G. Dubrovskii, N.V. Nazarenko, J. Chem. Phys., 132, 114507 (2010). DOI: 10.1063/1.3354118
  19. V.G. Dubrovskii, N.V. Sibirev, X. Zhang, R.A. Suris, Cryst. Growth Des., 10, 3949 (2010). DOI: 10.1021/cg100495b

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru