Size quantization and charge instability in colloidal quantum dots of narrow-gap semiconductors
Sergeev S. A.1, Gavrikov M. V.1, Zhukov N. D.1
1Saratov State University, Saratov, Russia
Email: ssergeev@bk.ru, maks.gavrikov.96@gmail.com, ndzhukov@rambler.ru

PDF
According to the current-voltage characteristics (CVC) and absorption spectra of colloidal quantum dots QD-InSb, -PbS, -HgSe on random samples, the manifestations of charge instability appear in the form of single current peaks and quasi-periodic deviations from the monotonic dependence of the CVC, are determined and studied. The results are explained by dimensional electron quantization in the model of a deep extended potential well and depending on the ratios of the quantization size and the de Broglie wavelength for an electron. It is assumed that the manifestation of Bloch oscillations has been experimentally confirmed. The data on the studied processes are determined and summarized in a table. Keywords: Quantum dot, nanocrystal, size quantization, quantum selection, Coulomb constraint, Bloch oscillations.
  1. D. Porotnikov, M. Zamkov, J. Phys. Chem. C, 124 (40), 21895 (2020). DOI: 10.1021/acs.jpcc.0c06868
  2. M. Alizadeh-Ghodsi, M. Pourhassan-Moghaddam, A. Zavari-Nematabad, B. Walker, N. Annabi, A. Akbarzadeh, Part. Part. Syst. Charact., 36 (2), 1800302 (2019). DOI: 10.1002/ppsc.201800302
  3. S.B. Brichkin, V.F. Razumov, Russ. Chem. Rev., 85 (12), 1297 (2016). DOI: 10.1070/RCR4656
  4. M.C. Weidman, M.E. Beck, R.S. Hoffman, F. Prins, W.A. Tisdale, ACS Nano, 8 (6), 6363 (2014). DOI: 10.1021/nn5018654
  5. N.D. Zhukov, T.D. Smirnova, A.A. Khazanov, O,Yu. Tsvetkova, S.N. Shtykov, FTP, 55 (12), 1203 (2021) (in Russian). DOI: 10.21883/FTP.2021.12.51706.9704
  6. A.S. Perepelitsa, Opticheskie svoystva lokalizovannykh sostoyaniy v kolloidnykh kvantovykh tochkakh sulfidov kadmiya i serebra, kand. dis. (Voronezh. gos. un-t, Voronezh, 2017) (in Russian)
  7. V.P. Dragunov, I.G. Neizvestny, V.A. Gridchin, Osnovy nanoelektroniki (Logos, M., 2006) (in Russian)
  8. G. Kirczenow, Phys. Rev. B, 98 (16), 165430 (2018). DOI: 10.1103/PhysRevB.98.165430
  9. A.K. Giri, H.K. Pandey, A.R. Singh, P.R. Singh, Int. J. Eng. Res. Technol., 8 (8), 280 (2019). IJERTV8IS080071
  10. K. Shibata, H. Yuan, Y. Iwasa, K. Hirakawa, Nature Commun., 4, 2664 (2013). DOI: 10.1038/ncomms3664
  11. N.D. Zhukov, M.V. Gavrikov, V.F. Kabanov, I.T. Yagudin, Semiconductors (2022). DOI: 10.1134/S1063782621040199
  12. http://xumuk.ru/encyklopedia
  13. D.V. Krylsky, N.D. Zhukov, Tech. Phys. Lett., 46 (9), 901 (2020). DOI: 10.1134/S1063785020090205
  14. N.D. Zhukov, M.V. Gavrikov, Mezhdunar. nauch.-issled. zhurn., N 8(110), 19 (2021) (in Russian). DOI: 10.23670/IRJ.2021.110.8.004
  15. A.Zh.K. Al-Alvani, A.S. Chumakov, M.V. Gavrikov, D.N. Bratashov, M.V. Pozharov, A.S. Kolesnikova, E.G. Glukhovskoy, Izv. Yugo-Zapad. gos. un-ta. Ser. Tekhnika i tekhnologii, 9 (1), 56 (2019) (in Russian)
  16. F.A. Serrano, S.-H. Dong, J. Quantum Chem., 113 (20), 2282 (2013). DOI: 10.1002/qua.24449
  17. V.N. Davydov, O.F. Zadorozhny, O.A. Karankevich, Russ. Phys. J., 62 (3), 499 (2019). DOI: 10.1007/s11182-019-01737-5
  18. R.A. Suris, I.A. Dmitriev, Phys. Usp., 46 (7), 745 (2003). DOI: 10.1070/PU2003v046n07ABEH001608
  19. N.D. Zhukov, M.V. Gavrikov, D.V. Kryl'skii, Tech. Phys. Lett., 46 (9), 881 (2020). DOI: 10.1134/S106378502009014X
  20. N.D. Zhukov, S.A. Sergeev, A.A. Khazanov, I.T. Yagudin, Pisma v ZhTF, 47 (22), 37 (2021). DOI: 10.21883/PJTF.2021.22.51725.18927

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru