Size quantization and charge instability in colloidal quantum dots of narrow-gap semiconductors
Sergeev S. A.1, Gavrikov M. V.1, Zhukov N. D.1
1Saratov State University, Saratov, Russia
Email: ssergeev@bk.ru, maks.gavrikov.96@gmail.com, ndzhukov@rambler.ru
According to the current-voltage characteristics (CVC) and absorption spectra of colloidal quantum dots QD-InSb, -PbS, -HgSe on random samples, the manifestations of charge instability appear in the form of single current peaks and quasi-periodic deviations from the monotonic dependence of the CVC, are determined and studied. The results are explained by dimensional electron quantization in the model of a deep extended potential well and depending on the ratios of the quantization size and the de Broglie wavelength for an electron. It is assumed that the manifestation of Bloch oscillations has been experimentally confirmed. The data on the studied processes are determined and summarized in a table. Keywords: Quantum dot, nanocrystal, size quantization, quantum selection, Coulomb constraint, Bloch oscillations.
- D. Porotnikov, M. Zamkov, J. Phys. Chem. C, 124 (40), 21895 (2020). DOI: 10.1021/acs.jpcc.0c06868
- M. Alizadeh-Ghodsi, M. Pourhassan-Moghaddam, A. Zavari-Nematabad, B. Walker, N. Annabi, A. Akbarzadeh, Part. Part. Syst. Charact., 36 (2), 1800302 (2019). DOI: 10.1002/ppsc.201800302
- S.B. Brichkin, V.F. Razumov, Russ. Chem. Rev., 85 (12), 1297 (2016). DOI: 10.1070/RCR4656
- M.C. Weidman, M.E. Beck, R.S. Hoffman, F. Prins, W.A. Tisdale, ACS Nano, 8 (6), 6363 (2014). DOI: 10.1021/nn5018654
- N.D. Zhukov, T.D. Smirnova, A.A. Khazanov, O,Yu. Tsvetkova, S.N. Shtykov, FTP, 55 (12), 1203 (2021) (in Russian). DOI: 10.21883/FTP.2021.12.51706.9704
- A.S. Perepelitsa, Opticheskie svoystva lokalizovannykh sostoyaniy v kolloidnykh kvantovykh tochkakh sulfidov kadmiya i serebra, kand. dis. (Voronezh. gos. un-t, Voronezh, 2017) (in Russian)
- V.P. Dragunov, I.G. Neizvestny, V.A. Gridchin, Osnovy nanoelektroniki (Logos, M., 2006) (in Russian)
- G. Kirczenow, Phys. Rev. B, 98 (16), 165430 (2018). DOI: 10.1103/PhysRevB.98.165430
- A.K. Giri, H.K. Pandey, A.R. Singh, P.R. Singh, Int. J. Eng. Res. Technol., 8 (8), 280 (2019). IJERTV8IS080071
- K. Shibata, H. Yuan, Y. Iwasa, K. Hirakawa, Nature Commun., 4, 2664 (2013). DOI: 10.1038/ncomms3664
- N.D. Zhukov, M.V. Gavrikov, V.F. Kabanov, I.T. Yagudin, Semiconductors (2022). DOI: 10.1134/S1063782621040199
- http://xumuk.ru/encyklopedia
- D.V. Krylsky, N.D. Zhukov, Tech. Phys. Lett., 46 (9), 901 (2020). DOI: 10.1134/S1063785020090205
- N.D. Zhukov, M.V. Gavrikov, Mezhdunar. nauch.-issled. zhurn., N 8(110), 19 (2021) (in Russian). DOI: 10.23670/IRJ.2021.110.8.004
- A.Zh.K. Al-Alvani, A.S. Chumakov, M.V. Gavrikov, D.N. Bratashov, M.V. Pozharov, A.S. Kolesnikova, E.G. Glukhovskoy, Izv. Yugo-Zapad. gos. un-ta. Ser. Tekhnika i tekhnologii, 9 (1), 56 (2019) (in Russian)
- F.A. Serrano, S.-H. Dong, J. Quantum Chem., 113 (20), 2282 (2013). DOI: 10.1002/qua.24449
- V.N. Davydov, O.F. Zadorozhny, O.A. Karankevich, Russ. Phys. J., 62 (3), 499 (2019). DOI: 10.1007/s11182-019-01737-5
- R.A. Suris, I.A. Dmitriev, Phys. Usp., 46 (7), 745 (2003). DOI: 10.1070/PU2003v046n07ABEH001608
- N.D. Zhukov, M.V. Gavrikov, D.V. Kryl'skii, Tech. Phys. Lett., 46 (9), 881 (2020). DOI: 10.1134/S106378502009014X
- N.D. Zhukov, S.A. Sergeev, A.A. Khazanov, I.T. Yagudin, Pisma v ZhTF, 47 (22), 37 (2021). DOI: 10.21883/PJTF.2021.22.51725.18927
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.