Analysis of the process of aluminium destruction on the surface of silicon during the electrical explosion of the conductor
Koryachko M. V. 1, Skvortsov A. A. 1, Pshonkin D.E. 1, Volodina O. V. 1
1Moscow Polytechnic University, Moscow, Russia
Email: m.v.koryachko@gmail.com, skvortsovaa2009@yandex.ru, cryo140401@gmail.com, moosbeere_O@mail.ru

PDF
The work considers the processes of formation of aluminium melt drops, dispersion of aluminium melts and dynamics along the surface of the semiconductor during the electrical explosion of the metal film. It has been shown that in conditions of flow of rectangular high-density current pulses (amplitude jmax=2· 1011 A/m2 and duration up to 2.0 ms), an electrical explosion of a conductor occurs through a test structure based on aluminium film (thickness 5 μm). Dispersion of up to 30% of the mass of the aluminium film is observed. It has been established that the main parameter characterizing the dispersion during the destruction of an aluminium film is the energy of an electrical pulse. The distribution of rounded aluminium particles by size (diameter) has been determined experimentally. It has been found that the largest number of particles in the conditions considered are 1-3 μm in size. Keywords: non-stationary states, heat shock, formation of drops on the surface, non-stationary surface mass transfer.
  1. Elektricheskiy vzryv provodnikov, pod red. A.A. Rukhadze, I.S. Shpigelya (Mir, M., 1965) (in Russian)
  2. V.A. Burtsev, N.V. Kalinin, A.V. Luchinskiy, Elektricheskiy vzryv provodnikov i ego primenenie v elektrofizicheskikh ustanovkakh (Energoatomizdat, M., 1990) (in Russian)
  3. R. Han, C. Li, W. Yuan, J. Ouyang, J. Wu, Y. Wang, W. Ding, Y. Zhang, High Voltage, 7 (1), 117 (2022). DOI: 10.1049/hve2.12184
  4. T.J. Awe, E.P. Yu, M.W. Hatch, B.T. Hutsel, B.S. Bauer, Phys. Plasmas, 28 (7), 072104 (2021). DOI: 10.1063/5.0053898
  5. H. Lu, X. Xu, L.-S. Xie, H.-L. Wang, G.-N. Sun, Q. Yang, Chem. Eng. Sci., 195, 720 (2019). DOI: 10.1016/J.CES.2018.10.017
  6. E.S. Grinats, V.A. Zhbanov, A.V. Kashevarov, A.B. Miller, Yu.F. Potapov, A.L. Stasenko, High Temp., 57 (2), 222 (2019). DOI: 10.1134/S0018151X19020056
  7. J. Brenneman, D.Z. Tansel, G.K. Fedder, R. Panat, Extreme Mech. Lett., 43, 101199 (2021). DOI: 10.1016/j.eml.2021.101199
  8. M. Nelhiebel, R. Illing, Th. Detzel, S. Wohlert, B. Auer, S. Lanzerstorfer, M. Rogalli, W. Robl, S. Decker, J. Fugger, M. Ladurner, Microelectron. Reliab., 53 (9-11), 1745 (2013). DOI: 10.1016/j.microrel.2013.07.123
  9. A.A. Skvortsov, M.V. Koryachko, M.R. Rybakova, Tech. Phys. Lett., 46 (4), 374 (2020). DOI: 10.1134/S1063785020040276
  10. A.A. Skvortsov, S.M. Zuev, M.V. Koryachko, V.V. Glinskiy, Microelectron. Int., 33 (2), 102 (2016). DOI: 10.1108/MI-05-2015-0049
  11. A.A. Skvortsov, M.V. Koryachko, P.A. Skvortsov, M.N. Luk'yanov, J. Mater. Eng. Perform., 29 (7), 4390 (2020). DOI: 10.1007/s11665-020-04925-4
  12. Yu.A. Kotov, J. Nanopart. Res., 5 (5-6), 539 (2003). DOI: 10.1023/B:NANO.0000006069.45073.0b
  13. Y. Wang, R.E. Khayat, J. Fluid Mech., 883, A59 (2019). DOI: 10.1017/jfm.2019.924
  14. V.V. Shepelev, N.A. Inogamov, S.V. Fortova, Opt. Quantum Electron., 52 (2), 88 (2020). DOI: 10.1007/s11082-020-2214-0
  15. A. Pervikov, N. Toropkov, S. Kazantsev, O. Bakina, E. Glazkova, M. Lerner, Materials, 14 (21), 6602 (2021). DOI: 10.3390/ma14216602

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru