The application of supplementary fuels for the control of supersonic reacting air-fuel mix flows in the combustion chamber
Kolosenok S.V.1,2, Kuranov A.L.1, Savarovskiy A.A.1, Bulat P.V.2, Galadzhun A.A.2, Levihin A.A.2, Nikitenko A.B.2
1JSC “Hypersonic systems research enterprise”, St. Petersburg, Russia
2Baltic State Technical University "VOENMEKH" named after Marshal D. F. Ustinov, St. Petersburg, Russia
Email: mail@hypersonics.ru

PDF
Besides gas-dynamic methods, chemical ones are also suitable for the implementation of stable supersonic combustion of hydrocarbon fuels. Organoelemental compounds are known for their high reactivity, so attention was paid to organosilicon liquid during the research on the experimental model. The obtained estimates of the laminar flame speed in a mixture of vapors of this liquid with air were 0.72-0.8 m/s, which is higher than that of ethylene successfully used in supersonic combustion tests. The tested compound can be considered as a candidate for supplementary fuel to control the supersonic reactive flows in the combustion chambers of ramjet engines. Keywords: supersonic combustion, supplementary fuels, laminar flame speed, combustion efficiency
  1. M.K. Smart, AIAA J., 50 (3), 610 (2012). DOI: 10.2514/1.J051281
  2. S. Xu, Q. Liao, Proc. Eng., 99, 338 (2015). DOI: 10.1016/j.proeng.2014.12.544
  3. M. Karaca, S. Zhao, I. Fedioun, N. Lardjane, Aerospace Sci. Technol., 89, 89 (2019). DOI: 10.1016/j.ast.2019.03.050
  4. X. Gao, X. Han, Q. Fu, in Sixth Int. Conf. on intelligent control and information processing (ICICIP) (Wuhan, China, 2015), p. 501
  5. Z. Shaohua, X. Xu, Proc. of the Institution of Mechanical Engineers, Part G: J. Aerospace Eng., 232 (10), 1864 (2017). DOI: 10.1177/0954410017708213
  6. A.L. Kuranov, S.V. Kolosenok, A.B. Nikitenko, A.A. Savarovskiy, Formula poleznoj modeli RU 192 758 U1 (in Russian)
  7. W. Han, P. Dai, X. Gou, Z. Chen, Appl. Energy Comb. Sci., 1-4, 100008 (2020). DOI: 10.1016/j.jaecs.2020.100008
  8. P.K. Tretyakov, A.V. Tupikin, A.L. Kuranov, S.V. Kolosenok, A.A. Savarovskii, V.M. Abashev, Combust. Explos. Shock Waves, 56, 533 (2020). DOI: 10.1134/S0010508220050044
  9. G. Fritz, Z. Anorgan. Allg. Chem., 273 (3-5), 275 (1953). DOI: 10.1002/zaac.19532730320
  10. M. Gerstein, Symp. (Int.) Combust., 7 (1), 903 (1958)
  11. J. Chao, J. Lee, C. Bauwens, S. Dorofeev, J. Loss Prev. Process Ind., 36, 471 (2015). DOI: 10.1016/j.jlp.2014.11.019
  12. J. Pesti, G.L. Larson, Organ. Process Res. Dev., 20 (7), 1164 (2016). DOI: 10.1021/acs.oprd.6b00124
  13. M.J. Almond, R. Becerra, J.A. Bowes, J.P. Cannady, J.S. Ogden, N.A. Younge, R. Walsh, Phys. Chem. Chem. Phys., 11 (40), 9259 (2009). DOI: 10.1039/B910549B

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru