Physical approaches to the design of functional metal-dielectric systems based on opals in photonics
Khanin S. D.1, Vanin A. I.2, Kumzerov Yu. A.2,3, Solovyev V. G.1,2, Cvetkov A. V.2, Yanikov M. V.2
1S.M. Budienny Military Telecommunications Academy, St. Petersburg, Russia
2Pskov State University, Pskov, Russia
3Ioffe Institute, St. Petersburg, Russia
Email: solovyev_v55@mail.ru
The possibilities of practical implementation of physical approaches to the design of metal-dielectric photonic crystal systems based on opals, which allow controlling the propagation of electromagnetic waves, are shown. The implemented approaches are based on the effects of excitation of surface plasmon-polaritons capable of propagating along the metal-dielectric interface in plasmonic-photonic layered heterostructures, and modification of the photonic-energy structure of the nanocomposite as a result of dispersion of silver in the opal matrix. Experimental results are presented indicating the occurrence of extraordinary transmission and absorption of light in plasmonic-photonic heterostructures, as well as the asymmetric shape of curves in the reflection spectra of nanocomposites, which is associated with the Fano resonance. Keywords: photonic crystals, opals, surface plasmon-polaritons, metal-dielectric systems, Fano resonance.
- B.P. Wong, A. Mittal, Yu. Cao, G. Starr. Nano-KMOP-skhemy i proektirovaniye na fizicheskom urovne (Tekhnosfera, M., 2014) (in Russian)
- Photonic crystals: Advances in design, fabrication, and characterization. Ed. by K. Busch, S. Lolkes, R.B. Wehrspohn, H. Foll (Wiley-VCH, 2004)
- J.D. Joannopoulos, R.D. Meade, J.N. Winn. Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008)
- S.G. Romanov, A. Korovin, A. Regensburger, U. Peschel. Adv. Mater., 23 (22--23), 2515 (2011). DOI: 10.1002/adma.201100460
- Poverkhnostnye polyaritony (Elektromagnitnye volny na poverkhnostyakh i granitsakh razdela sred), ed. by V.M. Agranovitch, D.L. Mills (Nauka, M., 1985) (in Russian)
- K.Y. Bliokh, F.J. Rodri guez-Fortuno, A.Y. Bekshaev, Y.S. Kivshar, F. Nori. Opt. Lett., 43 (5), 963 (2018). DOI: 10.1364/OL.43.000963
- Kil-Song Song, Song-Jin Im, Ji-Song Pae, Chol-Song Ri, Kum-Song Ho, Chol-Sun Kim, Yong-Ha Han. Phys. Rev. B, 102, 115435 (2020). DOI: 10.1103/PhysRevB.102.115435
- T. Stauber,A. Nemilentsau,T. Low,G. Gomez-Santos. 2D Materials, 6 (4), 045023 (2019). DOI: 10.1088/2053-1583/ab2f05
- D.A. Usanov, A.V. Skripal', V.N. Posadskii, V.S. Tyazhlov, A.V. Baikin. Tech. Phys., 64 (10), 1523 (2019). DOI: 10.1134/S1063784219100232
- B.A. Knyazev, A.V. Kuzmin. Vestnik NGU. Ser. fiz., 2 (1), 108 (2007) (in Russian)
- S.A. Maier. Plasmonics: Fundamentals and Applications (Springer, NY., 2007)
- V.I. Balykin. UFN, 188 (9), 935 (2018) (in Russian). DOI: 10.3367/UFNr.2017.09.038206
- Xingce Fan, Qi Hao, Teng Qiu, Paul K. Chu. J. Appl. Phys., 127, 040901 (2020). DOI: 10.1063/1.5129365
- M.G. Guschin, D.O. Gagarinova,S.A. Plyastsov, T.A. Vartanyan. Opt. i spektr.,129 (9),1212(2021) (in Russian). DOI: 10.21883/OS.2021.09.51353.2264-21
- S. Ganesan, S. Maricot, J.-F. Robillard, E. Okada, V.-T. Bakouche, L. Hay, J.-P. Vilcot. Sensors, 21, 2035 (2021). DOI: 10.3390/s21062035
- D.V. Nesterenko, R.A. Pavelkin, Sh. Khayashi. Komp. opt., 43 (4), 596 (2019) (in Russian). DOI: 10.18287/2412-6179-2019-43-4-596-604
- P. Li, Y. Wang, P. Xu. Appl. Opt., 58 (16), 4205 (2019). DOI: 10.1364/AO.58.004205
- A.B. Petrin, O.D. Vol'pyan, A.S. Sigov. Tech. Phys., 63 (3), 422 (2018). DOI: 10.1134/S1063784218030192
- E.A. Kadomina, E.A. Bezus, L.L. Doskolovitch. Komp. opt., 42 (5), 800 (2018) (in Russian). DOI: 10.18287/2412-6179-2018-42-5-800-806
- V.V. Klimov. Nanoplazmonika (Fizmatlit, M., 2010) (in Russian)
- S.Y. Vetrov, R.G. Bikbaev, I.V. Timofeev. J. Exp. Theor. Phys., 117, 988 (2013). DOI: 10.1134/S1063776113140185
- A.P. Vinogradov, A.V. Dorofeenko, A.M. Merzlikin, A.A. Lisyansky. UFN, 180 (3), 249 (2010) (in Russian). DOI: 10.3367/UFNr.0180.201003b.0249
- V.G. Balakirev, V.N. Bogomolov, V.V. Zhuravlev, Yu.A. Kumzerov, V.P. Petranovskii, S.G. Romanov, L.A. Samoilovich. Crystallogr. Rep., 38 (3), 348 (1993)
- V.N. Astratov,V.N. Bogomolov,A.A. Kaplyanskii, A.V. Prokofiev,L.A. Samoilovich, S.M. Samoilovich, Yu.A. Vlasov. Il Nuovo Cimento, 17D (11--12), 1349 (1995)
- G.N. Aliev, V.G. Golubev, A.A. Dukin, D.A. Kurdyukov, A.V. Medvedev, A.B. Pevtsov, L.M. Sorokin, J.L. Hutchison. Phys. Solid State, 44 (12), 2224 (2002). DOI: 10.1134/1.1529915
- V.S. Gorelik. FTT, 51 (7), 1252 (2009). [V.S. Gorelik. Phys. Solid State, 51 (7), 1321 (2009). DOI: 10.1134/S1063783409070014]
- P.V. Dolganov, V.M. Masalov, N.S. Sukhinina, V.K. Dolganov, G.A. Emel'chenko.Phys.SolidState,56 (4),746(2014). DOI: 10.1134/S1063783414040088
- E. Armstrong, C. O'Dwyer. J. Mater. Chem. C, 3, 6109 (2015). DOI: 10.1039/c5tc01083g
- A.I. Vanin,Yu.A. Kumzerov,A.E. Lukin,V.G. Solovyev, S.D. Khanin, M.V. Yanikov. Peredacha i preobrazovaniye elektromagnitnogo izlucheniya v fotonno-kristallicheskikh strukturakh i metallodielektricheskikh kompozitsionnykh sistemakh na osnove opalov (Pskov State University, Pskov, 2017) (in Russian)
- A.V. Cvetkov, V.I. Gerbreders, S.D. Khanin, A.E. Lukin, A.S. Ogurcovs, S.G. Romanov, V.G. Solovyev, A.I. Vanin, M.V. Yanikov. Proc. of the 11th Int. Scientific and Practical Conference: Environment. Technology. Resources (Rezekne, Latvia,2017),v. 3,p. 37. DOI: 10.17770/etr2017vol3.2660
- A.I. Vanin, A.E. Lukin, S.G. Romanov, V.G. Solovyev, S.D. Khanin, M.V. Yanikov. Phys. Solid State, 60 (4), 774 (2018). DOI: 10.1134/S1063783418040339
- A.I. Vanin, Yu.A. Kumzerov, S.G. Romanov, V.G. Solovyev, S.D. Khanin, A.V. Cvetkov, M.V. Yanikov. Opt. Spectr., 128 (12), 2022 (2020). DOI: 10.1134/S0030400X20121078
- S.G. Romanov. Phys.SolidState,59 (7),1356(2017). DOI: 10.1134/S1063783417070216
- A.A. Semenova, E.A. Goodilin, A.P. Semenov, I.A. Semenova. Bull. Russian Academ. Sci.: Phys., 83 (11), 1415 (2019). DOI: 10.3103/S1062873819110200
- M. Born, E. Volf. Osnovy optiki (Nauka, M., 1970) (in Russian)
- C. Lethiec, G. Binard, T. Popescu, H. Frederich, P. Ngoc Hong, E. Yraola, C. Schwob, F. Charra, L. Coolen, L. Douillard, A. Ma\^i tre1. J. Phys. Chem. C, 120 (34), 19308 (2016). DOI: 10.1021/acs.jpcc.6b05718
- E.V. Panfilova, A.A. Dobronosova. Inzhenerny zhurnal: nauka i innovatsii, 8, 1 (2017) (in Russian). DOI: 10.18698/2308-6033-2017-8-1650
- A.F. Belyanin, A.S. Bagdasaryan, S.A. Bagdasaryan, E.R. Pavlyukova. Zhurn. radioelektron., 1, 1 (2021) (in Russian). DOI: 10.30898/1684-1719.2021.1.6
- O.V. Andreeva, A.I. Sidorov, D.I. Stasel'ko, T.A. Khrushcheva. Phys. Solid State, 54 (6), 1293 (2012). DOI: 10.1134/S1063783412060029
- U. Fano. Phys. Rev., 124, 1866 (1961)
- M.V. Rybin, A.B. Khanikaev, M. Inoue, K.B. Samusev, M.J. Steel, G. Yushin, M.F. Limonov. Phys.Rev.Lett., 103, 023901(2009). DOI: 10.1103/PhysRevLett.103.023901
- M.V. Rybin, A.B. Khanikaev, M. Inoue, A.K. Samusev, M.J. Steel, G. Yushin, M.F. Limonov. Photon. Nanostruct., 8, 86 (2010)
- M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar. Nat. Photonics, 11, 543 (2017). DOI: 10.1038/nphoton.2017.142
- A.I. Vanin, Yu.A. Kumzerov, V.G. Solov'ev, S.D. Khanin, S.E. Gango, M.S. Ivanova, M.M. Prokhorenko, S.V. Trifonov, A.V. Cvetkov, M.V. Yanikov. Glass Phys. Chem., 47 (3), 229 (2021). DOI: 10.1134/S1087659621030123
- A.V. Il'inskii, R.A. Aliev, D.A. Kurdyukov, N.V. Sharenkova, E.B. Shadrin, V.G. Golubev. Phys.StatusSolidiA, 203 (8), 2073(2006). DOI: 10.1002/pssa.200521305
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.