Degradation of InGaN/GaN quantum well UV LEDs caused by short-term exposure to current
Ivanov A. M.1, Klochkov A. V.1
1Ioffe Institute, St. Petersburg, Russia
Email: alexandr.ivanov@mail.ioffe.ru, alex.klo@mail.ioffe.ru

PDF
A comparative analysis of the initial stages of degradation of ultraviolet and blue LED structures with InGaN/GaN quantum wells is carried out. In the mode of accelerated aging, the structures were subjected to short-term, sequential exposure to currents of 80-190 mA at forward bias. The exposure time did not exceed three hours. There was an increase (up to 20%) in the external quantum efficiency. The most probable physical mechanisms explaining the changes in InGaN/GaN LEDs are presented and possible ways to slow down the aging of UV LEDs are outlined. Keywords: Degradation of ultraviolet light-emitting diodes, increase in quantum efficiency, slowing down the aging.
  1. J. Glaab, J. Haefke, J. Ruschel, M. Brendel, J. Rass, T. Kolbe, A. Knauer, M. Weyers, S. Einfeldt, M. Guttmann, C. Kuhn, J. Enslin, T. Wernicke, M. Kneissl. J. Appl. Phys., 123, 104502 (2018). DOI: 10.1063/1.5012608
  2. J. Glaab, J. Ruschel, T. Kolbe, A. Knauer, J. Rass, H.K. Cho, N. Lobo Ploch, S. Kreutzmann, S. Einfeldt, M. Weyers, M. Kneissl. IEEE Photonics Technol. Lett., 31 (7), 529 (2019). DOI: 10.1109/LPT.2019.2900156
  3. H. Xiu, Y. Zhang, J. Fu, Z. Ma, L. Zhao, J. Feng. Curr. Appl. Phys., 19, 20 (2019). DOI: 10.1016/j.cap.2018.10.019
  4. Z. Ma, A. Almalki, X. Yang, X. Wu, X. Xi, J. Li, S. Lin, X. Li, S. Alotaibi, M. Al huwayz, M. Henini, L. Zhao. J. Alloys Compd., 845, 156177 (2020). DOI: 10.1016/j.jallcom.2020.156177
  5. Z. Ma, H. Cao, S. Lin, X. Li, L. Zhao. Solid State Electron., 156, 92 (2019). DOI: 10.1016/j.sse.2019.01.004
  6. D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni., J. Glaab, J. Rass, S. Einfeldt, F. Mehnke, J. Enslin, T. Wernicke, M. Kneissl. IEEE Trans. Electron Devices, 64 (1), 200 (2017). DOI: 10.1109/TED.2016.2631720
  7. M. Meneghini, D. Barbisan, Y. Bilenko, M. Shatalov, J. Yang, R. Gaska, G. Meneghesso, E. Zanoni. Microelectron. Reliab., 50, 1538 (2010). DOI: 10.1016/j.microrel.2010.07.089
  8. A.L. Zakheim, M.E. Levinshtein, V.P. Petrov, A.E. Chernyakov, E.I. Shabunina, N.M. Shmidt. Semicond., 46 (2), 208 (2012). DOI: 10.1134/S106378261202025X
  9. A. Pinos, S. Marcinkeviv cius, M.S. Shur. J. Appl. Phys., 109, 103108 (2011). DOI: 10.1063/1.3590149
  10. Z. Gong, M. Gaevski, V. Adivarahan, W. Sun, M. Shatalov, M. Asif Khan. Appl. Phys. Lett., 88, 121106 (2006). DOI: 10.1063/1.2187429
  11. J. Ruschel, J. Glaab, B. Beidoun, N.L. Ploch, J. Rass, T. Kolbe, A. Knauer, M. Weyers, S. Einfeldt, M. Kneissl. Photonics Res., 7 (7), B36 (2019). DOI: 10.1364/PRJ.7.000B36
  12. H. Dong, T. Jia, J. Liang, A. Zhang, Z. Jia, W. Jia, X. Liu, G. Li, Y. Wu, B. Xu. Opt. Laser Technol., 129, 106309 (2020). DOI: 10.1016/j.optlastec.2020.106309
  13. J. Huang, W. Liu, L. Yi, M. Zhou, D. Zhao, D. Jiang. Superlattices Microstruct., 113, 534 (2018). DOI: 10.1016/j.spmi.2017.11.036
  14. L. Wang, W. He, T. Zheng, Z. Chen, S. Zheng. Superlattices Microstruct., 133, 106188 (2019). DOI: 10.1016/j.spmi.2019.106188
  15. M.R. Kwon, T.H. Park, T.H. Lee, B.R. Lee, T.G. Kim. Superlattices Microstruct., 116, 215 (2018). DOI: 10.1016/j.spmi.2018.02.033
  16. N. Liu, H. Gu, Y. Wei, S. Zheng. Superlattices Microstruct., 141, 106492 (2020). https://doi.org/10.1016/j.spmi.2020.106492
  17. X. Wang, H.-Q. Sun, Z.-Y. Guo. Opt. Mater., 86, 133 (2018). DOI: 10.1016/j.optmat.2018.09.037
  18. R.K. Mondal, V. Chatterjee, S. Pal. Opt. Mater., 104, 109846 (2020). DOI: /10.1016/j.optmat.2020.109846
  19. W. Guo, F. Xu, Y. Sun, L. Lu, Z. Qin, T. Yu, X. Wang, B. Shen. Superlattices Microstruct., 100, 941 (2016). http://dx.doi.org/10.1016/j.spmi.2016.10.070
  20. Q. Wang, L. He, L. Wang, C. Li, C. He, D. Xiong, D. Lin, J. Wang, N. Liu, Z. Chen, M. He. Opt. Commun., 478, 126380 (2021). DOI: 10.1016/j.optcom.2020.126380
  21. Y. Zhang, L. Yu, K. Li, H. Pi, J. Diao, X. Wang, Y. Shen, C. Zhang, W. Hu, W. Song, S. Li. Superlattices Microstruct., 82, 151 (2015). DOI: 10.1016/j.spmi.2015.02.004
  22. L. Wang, G. Li, W. Song, H. Wang, X. Luo, Y. Sun, B. Zhang, J. Jiang, S. Li. Superlattices Microstruct., 122, 608 (2018). DOI: 10.1016/j.spmi.2018.06.039
  23. A.M. Ivanov. Tech. Phys., 66 (1), 71 (2021). DOI: 10.1134/S1063784221010114
  24. N. Renso, C. De Santi, A. Caria, F. Dalla Torre, L. Zecchin, G. Meneghesso, E. Zanoni, M. Meneghini. J. Appl. Phys., 127, 185701 (2020). DOI: 10.1063/1.5135633
  25. F. Piva, C. De Santi, M. Deki, M. Kushimoto, H. Amano, H. Tomozawa, N. Shibata, G. Meneghesso, E. Zanoni, M. Meneghini. Microelectron. Reliab., 100--101, 113418 (2019). DOI: 10.1016/j.microrel.2019.113418
  26. T. Yu, S. Shang, Z. Chen, Z. Qin, L. Lin, Z. Yang, G. Zhang. J. Lumin., 122--123, 696 (2007). DOI: 10.1016/j.jlumin.2006.01.263
  27. M. Buffolo, C. De Santi, M. Meneghini, D. Rigon, G. Meneghesso, E. Zanoni. Microelectron. Reliab., 55, 1754 (2015). http://dx.doi.org/10.1016/j.microrel.2015.06.098
  28. J. Fu, L. Zhao, H. Cao, X. Sun, B. Sun, J. Wang, J. Li. AIP Adv. 6, 055219 (2016). http://dx.doi.org/10.1063/1.4953056
  29. I.N. Yassievich. Semicond. Sci. Technol. 9, 1433 (1994)
  30. M. La Grassa, M. Meneghini, C. De Santi, E. Zanoni, G. Meneghesso. Microelectron. Reliab., 64, 614 (2016). DOI: 10.1016/j.microrel.2016.07.131
  31. N.I. Bochkareva, A.M. Ivanov, A.V. Klochkov, V.A. Tarala, Y.G. Shreter. Tech. Phys. Lett., 42 (11), 1099 (2016). DOI: 10.1134/S1063785016110146
  32. S.Yu. Karpov. Opt. Quantum Electron. 47, 1293 (2015). DOI: 10.1007/s11082-014-0042-9
  33. Q. Lv, J. Gao, X. Tao, J. Zhang, C. Mo, X. Wang, C. Zheng, J. Liu. J. Lumin., 222, 117186 (2020). DOI: 10.1016/j.jlumin.2020.117186
  34. P. Sahare, B.K. Sahoo. Mater. Today: Proceedings, 28, 74 (2020). DOI: 10.1016/j.matpr.2020.01.303
  35. N. Trivellin, D. Montia, C. De Santia, M. Buffoloa, G. Meneghessoa, E. Zanonia, M. Meneghinia. Microelectron. Reliab., 88--90, 868 (2018). DOI: 10.1016/j.microrel.2018.07.145
  36. M. Meneghini, N. Trivellin, K. Orita, S. Takigawa, M. Yuri, T. Tanaka, D. Ueda, E. Zanoni, G. Meneghesso. IEEE Electron Device Lett., 30 (4), 356 (2009). DOI: 10.1109/LED.2009.2014570
  37. J. Hu, L. Yang, M.W. Shin. J. Phys. D: Appl. Phys., 41, 035107 (2008). http://dx.doi.org/10.1088/0022-3727/41/3/035107
  38. D. Monti, M. Meneghini, C. De Santi, G. Meneghesso, E. Zanoni, A. Bojarska, P. Perlin. Microelectron. Reliab., 76--77, 584 (2017). DOI: 10.1016/j.microrel.2017.06.043
  39. M. Meneghini, G. Meneghesso, N. Trivellin, E. Zanoni, K. Orita, M. Yuri, D. Ueda. IEEE Electron Device Lett., 29 (6), 578 (2008). DOI: 10.1109/LED.2008.921098
  40. N.I. Bochkareva, Y.G. Shreter. Semicond., 52 (7), 934 (2018). DOI: 10.1134/S1063782618070035
  41. N.I. Bochkareva, A.M. Ivanov, A.V. Klochkov, Y.G. Shreter. J. Phys.: Conf. Ser., 1697, 012203 (2020). DOI: 10.1088/1742-6596/1697/1/012203
  42. D. Zhu, J. Xu, A. Noemaun, J. Kim, E. Schubert, M. Crawford, D. Koleske. Appl. Phys. Lett., 94, 081113 (2009). DOI: 10.1063/1.3089687
  43. M. Osinski, D.L. Barton. In coll.: Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, ed. by S. Nakamura, S.F. Chichibu. (CRC Press, 2000), p. 386. ISBN 9780748408368
  44. I-H. Lee, A.Y. Polyakov, S-M. Hwang, N.M. Shmidt, E.I. Shabunina, N.A. Tal'nishnih, N.B. Smirnov, I.V. Shchemerov, R.A. Zinovyev, S.A. Tarelkin, S.J. Pearton. Appl. Phys. Lett., 111, 062103 (2017). http://dx.doi.org/10.1063/1.4985190
  45. H.R. Qi, S. Zhang, S.T. Liu, F. Liang, L.K. Yi, J.L. Huang, M. Zhou, Z.W. He, D.G. Zhao, D.S. Jiang. Superlattices Microstruct., 133, 106177 (2019). DOI: 10.1016/j.spmi.2019.106177
  46. Q. Xu, S. Zhang, B. Liu, T. Tao, Z. Xie, X. Xiu, D. Chen, P. Chen, P. Ha, Y. Zheng, R. Zhang. Superlattices Microstruct., 119, 150 (2018). DOI: 10.1016/j.spmi.2018.04.053
  47. A.V. Mazalov, D.R. Sabitov, V.A. Kureshov, A.A. Padalitsa, A.A. Marmalyuk, R.Kh. Akchurin. Mod. Electron. Mater., 2, 45 (2016). http://dx.doi.org/10.1016/j.moem.2016.09.003

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru