The effect of He : O plasma treatment on the structure of multi-walled carbon nanotubes
Bolotov V.V.
1, Knyazev E.V.
1, Nesov S.N.
11Omsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Omsk, Russia
Email: bolotov@obisp.oscsbras.ru, knyazev@obisp.oscsbras.ru, nesov@obisp.oscsbras.ru
The functionalization of multi-walled carbon nanotubes in He : O plasma is investigated. It is shown that plasma treatment leads to the removal of defective outer graphene layers and their fragments due to oxidation. It is established that the surface of functionalized multi-walled carbon nanotubes contains numerous uncoordinated carbon atoms and oxygen-containing functional groups. The preservation of the structure of the internal graphene layers of nanotubes and the formation of broken chemical bonds ensure a decrease in electrical resistance. At the same time, there is a narrowing of the distribution of electrical resistance values of nanotube ensembles. Keywords: multi-walled carbon nanotubes, plasma treating, functionalization, transmission electron microscopy, X-ray photoelectron spectroscopy
- V.V. Bolotov, P.M. Korusenko, S.N. Nesov, S.N. Povoroznyuk, E.V. Knyazev, Nucl. Instrum. Meth. Phys. Res., 337, 1 (2014). DOI: 10.1016/j.nimb.2014.07.014
- A.A. Burtsev, A.A. Pavlov, E.P. Kitsyuk, Yu.A. Grigor'ev, A.V. Danilushkin, K.V. Shumikhin, Tech. Phys. Lett., 43 (6), 542 (2017). DOI: 10.1134/S1063785017060062
- L. An, X. Yang, C. Chang, IJTAN, 1, 30 (2013). DOI: 10.11159/ijtan.2013.004
- N.V. Glebova, A.A. Nechitailov, Tech. Phys. Lett., 36 (10), 878 (2010). DOI: 10.1134/S1063785010100020
- Yu.A. Polozhentseva, M.P. Karushev, A.M. Rumyantsev, I.A. Chepurnaya, A.M. Timonov, Tech. Phys. Lett., 46 (2), 196 (2020). DOI: 10.1134/S106378502002025X
- J. Prashanth, A. Manivannan, N. Prashant, Electrochem. Soc. Interface, 19, 57 (2010). DOI: 10.1149/2.F07103if
- Y.H. Yan, J. Cui, M.B. Chan-Park, X. Wang, Q.Y. Wu, Nanotechnology, 18, 115712 (2007). DOI: 10.1088/0957-4484/18/11/115712
- S.V. Bulyarskiy, V.S. Belov, E.P. Kitsyuk, A.V. Lakalin, M.S. Molodenskii, A.A. Pavlov, R.M. Ryazanov, A.V. Terent'ev, A.A. Shamanaev, Tech. Phys. Lett., 46 (10), 996 (2020). DOI: 10.1134/S1063785020100193
- S.N. Nesov, P.M. Korusenko, V.V. Bolotov, S.N. Povoroznyuk, D.A. Smirnov, Phys. Solid State, 59 (10), 2030 (2017). DOI: 10.1134/S1063783417100286
- L.G. Bulusheva, S.G. Stolyarova, A.L. Chuvilin, Yu.V. Shubin, I.P. Asanov, A.M. Sorokin, M.S. Mel'gunov, S. Zhang, Y. Dong, X. Chen, H. Song, A.V. Okotrub, Nanotechnology, 29, 134001 (2019). DOI: 10.1088/1361-6528/aaa99f
- D.Yu. Usachov, A.V. Fedorov, O.Yu. Vilkov, B.V. Senkovskiy, V.K. Adamchuk, B.V. Andryushechkin, D.V. Vyalikh, Phys. Solid State, 55 (6), 1325 (2013). DOI: 10.1134/S1063783413060310
- A.K. Bhattacharya, D.R. Pyke, G.S. Walker, C.R. Werrett, Appl. Surf. Sci., 108, 465 (1997)
- P. Bazylewski, D.W. Boukhvalov, A.I. Kukharenko, E.Z. Kurmaev, A. Hunt, A. Moewes, Y.H. Lee, S.O. Cholakh, G.S. Chang, RSC Adv., 5, 75600 (2015). DOI: 10.1039/C5RA12893E
- E.V. Knyazev, V.V. Bolotov, K.E. Ivlev, S.N. Povoroznyuk, V.E. Kan, D.V. Sokolov, Phys. Solid State, 61 (3), 433 (2019). DOI: 10.1134/S1063783419030168.
- V.A. Sergeev, E.S. Klimov, I.V. Frolov, Tech. Phys., 64 (8), 1155 (2019). DOI: 10.1134/S1063784219080206
- S. Dehghani, M.K. Moravvej-Farshi, M.H. Sheikhi, Mod. Phys. Lett. B, 26, 1250136 (2012). DOI: 10.1142/S0217984912501369
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.