The effect of He : O plasma treatment on the structure of multi-walled carbon nanotubes
Bolotov V.V. 1, Knyazev E.V. 1, Nesov S.N. 1
1Omsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Omsk, Russia
Email: bolotov@obisp.oscsbras.ru, knyazev@obisp.oscsbras.ru, nesov@obisp.oscsbras.ru

PDF
The functionalization of multi-walled carbon nanotubes in He : O plasma is investigated. It is shown that plasma treatment leads to the removal of defective outer graphene layers and their fragments due to oxidation. It is established that the surface of functionalized multi-walled carbon nanotubes contains numerous uncoordinated carbon atoms and oxygen-containing functional groups. The preservation of the structure of the internal graphene layers of nanotubes and the formation of broken chemical bonds ensure a decrease in electrical resistance. At the same time, there is a narrowing of the distribution of electrical resistance values of nanotube ensembles. Keywords: multi-walled carbon nanotubes, plasma treating, functionalization, transmission electron microscopy, X-ray photoelectron spectroscopy
  1. V.V. Bolotov, P.M. Korusenko, S.N. Nesov, S.N. Povoroznyuk, E.V. Knyazev, Nucl. Instrum. Meth. Phys. Res., 337, 1 (2014). DOI: 10.1016/j.nimb.2014.07.014
  2. A.A. Burtsev, A.A. Pavlov, E.P. Kitsyuk, Yu.A. Grigor'ev, A.V. Danilushkin, K.V. Shumikhin, Tech. Phys. Lett., 43 (6), 542 (2017). DOI: 10.1134/S1063785017060062
  3. L. An, X. Yang, C. Chang, IJTAN, 1, 30 (2013). DOI: 10.11159/ijtan.2013.004
  4. N.V. Glebova, A.A. Nechitailov, Tech. Phys. Lett., 36 (10), 878 (2010). DOI: 10.1134/S1063785010100020
  5. Yu.A. Polozhentseva, M.P. Karushev, A.M. Rumyantsev, I.A. Chepurnaya, A.M. Timonov, Tech. Phys. Lett., 46 (2), 196 (2020). DOI: 10.1134/S106378502002025X
  6. J. Prashanth, A. Manivannan, N. Prashant, Electrochem. Soc. Interface, 19, 57 (2010). DOI: 10.1149/2.F07103if
  7. Y.H. Yan, J. Cui, M.B. Chan-Park, X. Wang, Q.Y. Wu, Nanotechnology, 18, 115712 (2007). DOI: 10.1088/0957-4484/18/11/115712
  8. S.V. Bulyarskiy, V.S. Belov, E.P. Kitsyuk, A.V. Lakalin, M.S. Molodenskii, A.A. Pavlov, R.M. Ryazanov, A.V. Terent'ev, A.A. Shamanaev, Tech. Phys. Lett., 46 (10), 996 (2020). DOI: 10.1134/S1063785020100193
  9. S.N. Nesov, P.M. Korusenko, V.V. Bolotov, S.N. Povoroznyuk, D.A. Smirnov, Phys. Solid State, 59 (10), 2030 (2017). DOI: 10.1134/S1063783417100286
  10. L.G. Bulusheva, S.G. Stolyarova, A.L. Chuvilin, Yu.V. Shubin, I.P. Asanov, A.M. Sorokin, M.S. Mel'gunov, S. Zhang, Y. Dong, X. Chen, H. Song, A.V. Okotrub, Nanotechnology, 29, 134001 (2019). DOI: 10.1088/1361-6528/aaa99f
  11. D.Yu. Usachov, A.V. Fedorov, O.Yu. Vilkov, B.V. Senkovskiy, V.K. Adamchuk, B.V. Andryushechkin, D.V. Vyalikh, Phys. Solid State, 55 (6), 1325 (2013). DOI: 10.1134/S1063783413060310
  12. A.K. Bhattacharya, D.R. Pyke, G.S. Walker, C.R. Werrett, Appl. Surf. Sci., 108, 465 (1997)
  13. P. Bazylewski, D.W. Boukhvalov, A.I. Kukharenko, E.Z. Kurmaev, A. Hunt, A. Moewes, Y.H. Lee, S.O. Cholakh, G.S. Chang, RSC Adv., 5, 75600 (2015). DOI: 10.1039/C5RA12893E
  14. E.V. Knyazev, V.V. Bolotov, K.E. Ivlev, S.N. Povoroznyuk, V.E. Kan, D.V. Sokolov, Phys. Solid State, 61 (3), 433 (2019). DOI: 10.1134/S1063783419030168.
  15. V.A. Sergeev, E.S. Klimov, I.V. Frolov, Tech. Phys., 64 (8), 1155 (2019). DOI: 10.1134/S1063784219080206
  16. S. Dehghani, M.K. Moravvej-Farshi, M.H. Sheikhi, Mod. Phys. Lett. B, 26, 1250136 (2012). DOI: 10.1142/S0217984912501369

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru