Stability of functional characteristics of transparent electrodes based on the ZnO : Ga/Ag/ZnO : Ga multilayer structure
Asvarov A. Sh.1,2, Akhmedov A. K.1, Muslimov A. E.2, Kanevsky V. M.2
1Amirkhanov Institute of Physics, Daghestan Federal Research Center, Russian Academy of Sciences, Makhachkala, Russia
2Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
Email: abil-as@list.ru
Since the stability of functional properties of a transparent conducting three-layer structure ZnO:Ga/Ag/ZnO:Ga is important for practical application, we studied its long-term durability and thermal stability in air environment. It has been demonstrated that after prolonged interaction with the air environment at room temperature (for ~ 1000 days) and further heat treatment in air at temperatures of up to 450oC (for up to 10 h), the three-layer structure retains its integrity and is characterized by a low sheet resistance Rs=2.8 Ω/sq at average transmittance in the visible range Tav=82.1%. Keywords: transparent electrode, multilayer structure, ZnO, Ag, Ga, sheet resistance, transparence, stability, heat treatment.
- A.I. Baranov, D.A. Kudryashov, A.V. Uvarov, I.A. Morozov, A.A. Maksimova, E.A. Vyacheslavova, A.S. Gudovskikh, Pis'ma v ShTF, 47 (16), 24 (2021) (in Russian). DOI: 10.21883/PJTF.2021.16.51324.18779
- G. Lucarelli, T.M. Brown, Front. Mater., 6, 310 (2019). DOI: 10.3389/fmats.2019.00310
- Z. Zhao, T.L. Alford, Solar Energy Mater. Solar Cells, 157, 599 (2016). DOI: 10.1016/j.solmat.2016.07.044
- H. Beh, D. Hiller, J. Laube, S. Gutsch, M. Zacharias, J. Vac. Sci. Technol. A, 35, 01B127 (2017). DOI: 10.1116/1.4972466
- H. Akazawa, J. Vac. Sci. Technol. A, 35, 041515 (2017). DOI: 10.1116/1.4990538
- L. Liu, S. Ma, H. Wu, B. Zhu, H. Yang, J. Tang, X. Zhao, Mater. Lett., 149, 43 (2015). DOI: 10.1016/j.matlet.2015.02.093
- A. Anand, M.M. Islam, R. Meitzner, U.S. Schubert, H. Hoppe, Adv. Energy Mater., 11, 2100875 (2021). DOI: 10.1002/aenm.202100875
- A.K. Akhmedov, A.K. Abduev, V.M. Kanevsky, A.E. Muslimov, A.S. Asvarov, Coatings, 10, 269 (2020). DOI: 10.3390/coatings10030269
- F. Hajakbari, M. Ensandoust, Acta Phys. Pol. A, 129, 680 (2016). DOI: 10.12693/ APhysPolA.129.680
- X.-Y. Gao, S.-Y. Wang, J. Li, Y.-X. Zheng, R.-J. Zhang, P. Zhou, Y.-M. Yang, L.-Y. Chen, Thin Solid Films, 455-456, 438 (2004). DOI: 10.1016/j.tsf.2003.11.242
- P. Wang, D. Zhang, D.H. Kim, Z. Qiu, L. Gao, R. Murakami, X. Song, J. Appl. Phys., 106, 103104 (2009). DOI: 10.1063/1.3259426
- C.F. Holder, R.E. Schaak, ACS Nano, 13, 7359 (2019). DOI: 10.1021/acsnano.9b05157
- T. Miyata, Y. Ohtani, T. Kuboi, T. Minami, Thin Solid Films, 516, 1354 (2008). DOI: 10.1016/j.tsf.2007.03.084
- A. Asvarov, A. Abduev, A. Akhmedov, A. Abdullaev, Phys. Status Solidi C, 7, 1553 (2010). DOI: 10.1002/pssc.2009831581
- L. Xu, J. Miao, Y. Chen, J. Su, M. Yang, L. Zhang, L. Zhao, S. Ding, Optik, 170, 484 (2018). DOI: 10.1016/j.ijleo.2018.06.016
- L. Zhou, X. Chen, F. Zhu, X.X. Sun, Z. Sun, J. Phys. D: Appl. Phys., 45, 505103 (2012). DOI: 10.1088/0022-3727/45/50/505103
- C. Zhang, J. Zhao, H. Wu, S. Yu, J. Alloys Compd., 832, 154983 (2020). DOI: 10.1016/j.jallcom.2020.154983
- S.H. Lee, G. Kim, J.W. Lim, K.-S. Lee, M.G. Kang, Solar Energy Mater. Solar Cells, 186, 378 (2018). DOI: 10.1016/j.solmat.2018.07.010
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.