Вышедшие номера
Физические принципы создания магнитолевитационных систем на основе высокотемпературных сверхпроводящих композитов второго поколения (Обзор)
Российский фонд фундаментальных исследований (РФФИ), Экспансия, 20-18-50185
Российский фонд фундаментальных исследований (РФФИ), Аспиранты , 20-38-90144
Руднев И.А. 1, Анищенко И.В. 1
1Национальный исследовательский ядерный университет "МИФИ", Москва, Россия
Email: iarudnev@mephi.ru, mephizic@gmail.com
Поступила в редакцию: 27 мая 2021 г.
В окончательной редакции: 8 июля 2021 г.
Принята к печати: 13 июля 2021 г.
Выставление онлайн: 2 октября 2021 г.

Представлен обзор экспериментальных и теоретических исследований характеристик магнитолевитационных систем с использованием высокотемпературных сверхпроводников (ВТСП). Рассмотрены материалы, используемые в магнитолевитационных технологиях, а именно объемные сверхпроводники и ленточные ВТСП-композиты. Продемонстрированы основные экспериментальные данные, полученные как на объемных, так и ленточных сверхпроводниках, собранных в стопки различной конфигурации. Проанализированы факторы, влияющие на магнитосиловые характеристики: геометрические параметры, влияние внешних переменных магнитных полей, температуры, релаксационные явления. Значительная часть обзора посвящена описанию различных методов расчета магнитолевитационных систем, в том числе на основе стопок ВТСП-композитов. Рассмотрены особенности тепловых процессов в магнитолевитационных системах при криокулерном и азотном охлаждении. Приведены общие рекомендации для создания оптимальных магнитолевитационных систем на основе ленточных ВТСП-композитов. Ключевые слова: магнитная левитация, высокотемпературные сверхпроводники, ленточные композиты, сила левитации, латеральная сила, методы расчета магнитосиловых характеристик.
  1. S. Earnshaw. Transactions of the Cambridge Philosophical Society, 7, 97 (1848)
  2. M.V. Berry, A.K. Geim. Europ. J. Phys., 18 (4), 307 (1997). DOI: 10.1088/0143-0807/18/4/012
  3. A. Geim. Phys. Today, 51, 36 (1998). DOI: 10.1063/1.882437
  4. A.K. Geim, M.D. Simon, M.I. Boamfa, L.O. Heflinger. Nature, 400, 323 (1999). DOI: 10.1038/22444
  5. M.D. Simon, A.K. Geim. J. Appl. Phys., 87, 6200 (2000). DOI: 10.1063/1.372654
  6. M.D. Ainslie, H. Fujishiro. Supercond. Scie.Technol., 28, 053002 (2015). DOI: 10.1088/0953-2048/28/5/053002
  7. A. Ishihara, T. Akasaka, M. Tomita, K. Kishio. Supercond. Sci. Technol., 30, 035006 (2017). DOI: 10.1088/1361-6668/30/3/035006
  8. J. Zou, M.D. Ainslie, H. Fujishiro, A.G. Bhagurkar, T. Naito, N. Hari Babu, J.F. Fagnard, P. Vanderbemden, A. Yamamoto. Supercond. Scie. Technol., 28, 075009 (2015). DOI: 10.1088/0953-2048/28/7/075009
  9. H. Fujishiro, H. Mochizuki, M.D. Ainslie, T. Naito. Supercond. Sci. Technol., 29, 084001 (2016). DOI: 10.1088/0953-2048/29/8/084001
  10. J.D. Weiss, A. Yamamoto, A.A. Polyanskii, R.B. Richardson, D.C. Larbalestier, E.E. Hellstrom. Supercond. Sci. Technol., 28, 112001 (2015). DOI: 10.1088/0953-2048/28/11/112001
  11. K. Sawano, M. Morita, M. Tanaka, T. Sasaki, K. Kimura, S. Takebayashi, M. Kimura, K. Miyamoto. Jpn. J. Appl. Phys., 30, L1157 (1991). DOI: 10.1143/jjap.30.l1157
  12. Y. Shi, J. H. Durrell, A.R. Dennis, K. Huang, D.K. Namburi, D. Zhou, D.A. Cardwell. Supercond. Sci. Technol., 30, 015003 (2016). DOI: 10.1088/0953-2048/30/1/015003
  13. M. Ainslie, H. Fujishiro, T. Ujiie, J. Zou, A. Dennis, Y. Shi, D. Cardwell. Supercond. Sci. Technol., 27, 065008 (2014). DOI: 10.1088/0953-2048/27/6/065008
  14. M. Tomita, M. Murakami. Supercond. Sci. Technol., 13, 722 (2000). DOI: 10.1088/0953-2048/13/6/318
  15. S.B. Kim, J. Matsunaga, Y. Fujii, H. Onodera. IEEE Transactions on Appl. Superconduct., 23, 4603204 (2013). DOI: 10.1109/TASC.2013.2242513
  16. S. Nariki, N. Sakai, M. Murakami, I. Hirabayashi. Supercond. Sci.Technol., 17, S30 (2004). DOI: 10.1088/0953-2048/17/2/057
  17. M. Carrera, X. Granados, J. Amoros, R. Maynou, T. Puig, X. Obradors. IEEE Transactions on Appl. Superconduct., 19, 3553 (2009). DOI: 10.1109/TASC.2009.2017764
  18. T. Ida, Z. Li, D. Zhou, M. Miki, Y. Zhang, M. Izumi. Supercond. Sci. Technol., 29, 054005 (2016). DOI: 10.1088/0953-2048/29/5/054005
  19. C. Kim, J.-H. Joo, G.W. Hong, S.-C. Han, Y.H. Han, T. Sung, S.-J. Kim. Physica C Superconduct. Its Appl. PHYSICA C, 336, 233 (2000). DOI: 10.1016/S0921-4534(00)00292-6
  20. A. Murakami, H. Teshima, M. Morita, T. Kudo, A. Iwamoto. J. Physics: Conf. Series, 507, 012034 (2014). DOI: 10.1088/1742-6596/507/1/012034
  21. S. Jin, T.H. Tiefel, R.C. Sherwood, R.B. van Dover, M.E. Davis, G.W. Kammlott, R.A. Fastnacht. Phys. Rev. B, 37, 7850 (1988). DOi: 10.1103/PhysRevB.37.7850
  22. K. Salama, V. Selvamanickam, L. Gao, K. Sun. Appl. Phys. Lett., 54, 2352 (1989). DOI: 10.1063/1.101525
  23. M. Murakami, M. Morita, K. Doi, K. Miyamoto. Jpn J. Appl. Phys., 28, 1189 (1989). DOI: 10.1143/jjap.28.1189
  24. H. Fujimoto, M. Murakami, S. Gotoh, N. Koshizuka, T. Oyama, Y. Shiohara, S. Tanaka, in Advances in Superconductivity II, T. Ishiguro, K. Kajimura, eds. (Springer Japan, Tokyo, 1990), p. 285--288
  25. Z. Lian, Z. Pingxiang, J. Ping, W. Keguang, W. Jingrong, W. Xiaozu. Supercondu. Sci. Technol., 3, 490 (1990). DOI: 10.1088/0953-2048/3/10/002
  26. D. Shi, S. Sengupta, J.S. Luo, C. Varanasi, P.J. McGinn. Physica C: Superconduct. Applicat., 213, 179 (1993). DOI: 10.1016/0921-4534(93)90774-K
  27. P. de Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, M. Pernet. Nature, 349, 770 (1991). DOI: 10.1038/349770a0
  28. Y. Yamada, Y. Shiohara. Physica C: Superconduct., 217, 182 (1993). DOI: 10.1016/0921-4534(93)90810-D
  29. H. Walter, M.P. Delamare, B. Bringmann, A. Leenders, H.C. Freyhardt. J. Mater. Res., 15, 1231 (2000). DOI: 10.1557/JMR.2000.0175
  30. G. Fuchs, P. Schatzle, G. Krabbes, S. Grub, P. Verges, K.H. Muller, J. Fink, L. Schultz. Appl. Phys. Lett., 76, 2107 (2000). DOI: 10.1063/1.126278
  31. J.V. Yakhmi, in An interdisciplinary approach (IOP Publishing, 2021). DOI: 10.1088/978-0-7503-2256-0
  32. N. Ayai, M. Kikuchi, K. Yamazaki, S. Kobayashi, S. Yamade, E. Ueno, N. J. Fujikami, T. Kato, K. Hayashi, K. Sato, R. Hata, J. Iihara, K.J. Yamaguchi, J. Shimoyama. IEEE Transactions Appl. Superconduct., 17, 3075 (2007). DOI: 10.1109/TASC.2007.897947
  33. D.A. Cardwell, D.C. Larbalestier. Handbook of Superconducting Materials, 2nd Edition (3-Volume Set). (Taylor \& Francis, 2017)
  34. S.R. Foltyn, L. Civale, J.L. MacManus-Driscoll, Q.X. Jia, B. Maiorov, H. Wang, M. Maley. Nature Materia., 6, 631 (2007). DOI: 10.1038/nmat1989
  35. P.N. Arendt. IBAD Template Films for HTS Coated Conductors, A. Goyal, Ed. (Springer US, Boston, MA, 2005), DOI: 10.1007/0-387-25839-6\_1
  36. J.L. MacManus-Driscoll, S.C. Wimbush. Nature Rev. Mater., 6, 587 (2021). DOI: 10.1038/s41578-021-00290-3
  37. A. Sundaram, Y. Zhang, A. Knoll, D. Abraimov, P. Brownsey, M. Kasahara, G. Carota, R. Nakasaki, J. Cameron, G. Schwab, L. Hope, R. Schmidt, H. Kuraseko, T. Fukushima, D. Hazelton. Supercond. Sci. Technol., 29, 104007 (2016). DOI: 10.1088/0953-2048/29/10/104007
  38. Электронный ресурс. Режим доступа: https://www.theva. com/products/
  39. Электронный ресурс. Режим доступа: http://www.super- power-inc.com/content/2g-hts-wire
  40. K. Tsuchiya, A. Kikuchi, A. Terashima, K. Norimoto, M. Uchida, M. Tawada, M. Masuzawa, N. Ohuchi, X. Wang, T. Takao, S. Fujita. Cryogenics, 85, 1 (2017). DOI: 10.1016/j.cryogenics.2017.05.002
  41. A. Patel, V. Kalitka, S. Hopkins, A. Baskys, A. Figini Albisetti, G. Giunchi, A. Molodyk, B.A. Glowacki. IEEE Transactions Appl. Superconducti., 26, 1 (2016). DOI: 10.1109/TASC.2016.2524468
  42. M. Tomita, M. Murakami. Nature, 421, 517 (2003). DOI: 10.1038/nature01350
  43. J. Durrell, A. Dennis, J. Jaroszynski, M. Ainslie, K. Palmer, Y. Shi, A. Campbell, J. Hull, M. Strasik, E. Hellstrom, D. Cardwell. Supercond. Sci. Technol,, 27, 082001 (2014). DOI: 10.1088/0953-2048/27/8/082001
  44. Электронный ресурс. Режим доступа: www.superpower-inc.com/content/wire-specification
  45. A. Patel, K. Filar, V. Nizhankovskii, S. Hopkins, B.A. Glowacki. Appl. Phys. Lett., 102, 102601 (2013). DOI: 10.1063/1.4795016
  46. A. Baskys, A. Patel, S. Hopkins, V. Kalitka, A. Molodyk, B.A. Glowacki. IEEE Transactions Appl. Superconduct., 25, 1 (2015). DOI: 10.1109/TASC.2014.2360871
  47. A. Patel, A. Baskys, T. Mitchell-Williams, A. McCaul, W. Coniglio, B.A. Glowacki. Supercond. Sci.Technol., 31 (2017). DOI: 10.1088/1361-6668/aad34c
  48. F. Sass, G. Sotelo, R. Jr, F. Sirois. Supercond. Sci. Technol., 28, 125012 (2015). DOI: 10.1088/0953-2048/28/12/125012
  49. D. Brown, B.-M. Ma, Z. Chen. J. Magnetism and Magnetic Mater., 248, 432 (2002). DOI: 10.1016/S0304-8853(02)00334-7
  50. M. Sagawa, S. Hirosawa, H. Yamamoto, S. Fujimura, Y. Matsuura. Jpn. J. Appl. Phys., 26, 785 (1987). DOI: 10.1143/JJAP.26.785
  51. B.M. Ma, J.W. Herchenroeder, B. Smith, M. Suda, D. Brown, Z. Chen. J. Magnetism and Magnetic Mater., 239, 418 (2002). DOI: 10.1016/S0304-8853(01)00609-6
  52. P. Bernstein, J. Noudem. Supercond. Sci.Technol., 33, 033001 (2020). DOi: 10.1088/1361-6668/ab63bd
  53. I. Rudnev, M. Osipov, S. Pokrovskii, A. Podlivaev. Mater. Res. Express, 6, 036001 (2018). DOI: 10.1088/2053-1591/aaf7ae
  54. M. Osipov, A. Starikovskii, I. Anischenko, S. Pokrovskii, D. Abin, I. Rudnev. Supercond. Sci.Technol., 34 (4), 045003 (2021). DOI: 10.1088/1361-6668/abe18e
  55. J. Wang, S. Wang, C. Deng, J. Zheng, H. Song, Q. He, Y. Zeng, Z. Deng, J. Li, G. Ma, H. Jing, Y. Huang, J. Zhang, Y. Lu, L. Liu, L. Wang, J. Zhang, L. Zhang, M. Liu, Y. Qin, Y. Zhang. IEEE Transactions Appl. Superconduct., 17, 2091 (2007). DOI: 10.1109/TASC.2007.898367
  56. D.H.N. Dias, G.G. Sotelo, R. de Andrade. IEEE Transactions on Appl. Superconduct., 21, 1533 (2011). DOI: 10.1109/TASC.2010.2090635
  57. W. Yang, X. Chao, X. Bian, P. Liu, Y. Feng, P. Zhang, L. Zhou. Supercond. Sci. Technol., 16, 789 (2003). DOI: 10.1088/0953-2048/16/7/308
  58. T. Suzuki, E. Ito, T. Sakai, S. Koga, M. Murakami, K. Nagashima, Y. Miyazaki, H. Seino, N. Sakai, I. Hirabayashi, K. Sawa. IEEE Transactions Appl. Superconduct., 17, 3020 (2007). DOI: 10.1109/TASC.2007.899403
  59. P. Bernstein, L. Colson, L. Dupont, J. Noudem. Supercond. Sci. Technol., 30, 065007 (2017). DOI: 10.1088/1361-6668/aa69ec
  60. A. Sanchez, N. Del-Valle, C. Navau, D.-X. Chen. J. Appl. Phys., 105, 023906 (2009). DOI: 10.1063/1.3054922
  61. M.J. Qin, G. Li, H.K. Liu, S.X. Dou, E.H. Brandt. Phys. Rev. B, 66, 024516 (2002). DOI: 10.1103/PhysRevB.66.024516
  62. H. Jing, J. Wang, S. Wang, L. Wang, L. Liu, J. Zheng, Z. Deng, G. Ma, Y. Zhang, J. Li. Physica C: Superconduct. and its Applications, 463--465, 426 (2007). DOI: 10.1016/j.physc.2007.05.030
  63. N. Del-Valle, A. Sanchez, C. Navau, D.-X. Chen. J. Low Temperature Phys., 162, 62 (2011). DOI: 10.1007/s10909-010-0225-0
  64. G.G. Sotelo, D.H.N. Dias, R. de Andrade, R.M. Stephan. IEEE Transactions on Appl. Superconduct., 21, 1464 (2011). DOI: 10.1109/TASC.2010.2086034
  65. H. Liao, J. Zheng, L. Jin, H. Huang, Z. Deng, Y. Shi, D. Zhou, D. Cardwell. Supercond. Sci. Technol., 31 (3), (2018). DOI: 10.17863/CAM.21602
  66. W. Liu, J.S. Wang, G. Ma, J. Zheng, X.G. Tuo, L.L. Li, C.-Q. Ye, X.-L. Liao, S. Wang. Physica C: Superconduct., 474, 5 (2012). DOI: 10.1016/j.physc.2011.12.005
  67. T. Che, Y.F. Gou, J. Zheng, R.X. Sun, D.B. He, Z.G. Deng. J. Superconduct. Novel Magnetism, 27, 2211 (2014). DOI: 10.1007/s10948-014-2596-y
  68. D.H.N. Dias, G.G. Sotelo, F. Sass, E.S. Motta, R. de Andrade Jr, R.M. Stephan. Phys. Proced., 36, 1049 (2012). DOI: 10.1016/j.phpro.2012.06.104
  69. W. Yang, Y. Liu, Z. Wen, X. Chen, Y. Duan. Supercond. Sci. Technol., 21, 015014 (2007). DOI: 10.1088/0953-2048/21/01/015014
  70. F. Sass, D.H.N. Dias, G.G. Sotelo, R. de Andrade Jr. Physi. Proced., 36, 1008 (2012). DOI: 10.1016/j.phpro.2012.06.097
  71. F. Sass, D.H.N. Dias, G.G. Sotelo, R. de Andrade. IEEE Transactions on Appl. Superconduct., 23, 3600905 (2013). DOI: 10.1109/TASC.2012.2234172
  72. S.V. Pokrovskiy, N. Mineev, A. Sotnikova, Y. Ermolaev, I. Rudnev. J. Physics: Conf. Series, 507, 022025 (2014). DOI: 10.1088/1742-6596/507/2/022025
  73. I. Rudnev, D. Abin, M. Osipov, S.V. Pokrovskiy, Y. Ermolaev, N. Mineev. Phys. Proced., 65, 141 (2015). DOI: 10.1016/j.phpro.2015.05.086
  74. M.A. Osipov, D.A. Abin, S.V. Pokrovskiy, N.A. Mineev, I.A. Rudnev. Progress in Superconduct. Cryogenics, 17, 21 (2015)
  75. D. Abin, M. Osipov, S.V. Pokrovskiy, I. Rudnev. IEEE Transactions on Appl. Superconduct., 26, 1 (2016). DOI: 10.1109/TASC.2016.2525924
  76. S.V. Pokrovskiy, M. Osipov, D. Abin, I. Rudnev. IEEE Transactions on Appl. Superconduct., 26, 1 (2016). DOI: 10.1109/TASC.2016.2533573
  77. M. Osipov, A. Starikovskii, D. Abin, I. Rudnev. Supercond. Sci. Technolo., 32, 054003 (2019). DOI: 10.1088/1361-6668/ab06e6
  78. K. Liu, W. Yang, G. Ma, L. Queval, T. Gong, C. Ye, X. Li, Z. Luo. Supercond. Sci. Technol., 31, 015013 (2017). DOI: 10.1088/1361-6668/aa987b
  79. I. Anischenko, S. Pokrovskii, I. Rudnev. J. Physics: Conf. Series, 1238, 012020 (2019). DOI: 10.1088/1742-6596/1238/1/012020
  80. J. Ma, J. Geng, W.K. Chan, J. Schwartz, T. Coombs. Supercond. Sci. Technol., 33, 045007 (2020). DOI: 10.1088/1361-6668/ab6fe9
  81. J. Ma, T. Coombs, J. Geng, W. Chan, J. Gawith, C. Li, B. Shen, Y. Ozturk, J. Yang, J. Hu. IEEE Transactions on Appl. Superconduct., 30 (4), 1 (2020). DOI: 10.1109/TASC.2020.2977004
  82. S. Gyimothy, A. Kenderes, S. Bilicz, J. Pavo, Z. Badics, in 2019 22nd Intern. Conf. on the DOI: 10.1109/COMPUMAG45669.2019.9032824
  83. V. Zermeno, A. Abrahamsen, N. Mijatovic, B. Jensen, M. S rensen. J. Appl. Phys., 114, 173901 (2013). DOI: 10.1063/1.4827375
  84. S. Zou, V. Zermeno, F. Grilli. arXiv preprint arXiv: 1511.00516 (2015)
  85. S. Zou, V.M.R. Zermeno, F. Grilli. IEEE Transactions on Appl. Superconduct., 26, 1 (2016). DOI: 10.1109/TASC.2016.2535379
  86. I.V. Anischenko, S.V. Pokrovskii, I.A. Rudnev. J. Physics: Conf. Series, 1238, 012020 (2019). DOI: 10.1088/1742-6596/1238/1/012020
  87. A. Podlivaev, I. Rudnev, N. Shabanova. Bull. Lebedev Physi. Institute, 41, 351 (2015). DOI: 10.3103/S1068335614120033
  88. M.J. Wolf, R. Heller, W.H. Fietz, K.-P. Weiss. Cryogenics, 104, 102980 (2019). DOI: 10.1016/j.cryogenics.2019.102980
  89. X. Zhang, Z. Zhong, J. Geng, B. Shen, J. Ma, C. Li, H. Zhang, Q. Dong, T. Coombs. J. Superconduct. Novel Magnetism, 31, 3847 (2018). DOI: 10.1007/s10948-018-4678-8
  90. I.V. Anischenko, S.V. Pokrovskii, I.A. Rudnev. J. Physics: Conf. Series, 1389, 012064 (2019). DOI: 10.1088/1742-6596/1389/1/012064
  91. E.H. Brandt. Phys. Rev. B, 54, 4246 (1996). DOI: 10.1103/PhysRevB.54.4246
  92. L. Prigozhin. IEEE Transactions on Appl. Superconduct., 7, 3866 (1997). DOI: 10.1109/77.659440
  93. K. Berger, J. Lev\eque, D. Netter, B. Douine, A. Rezzoug. IEEE Transactions on Appl. Superconduct., 15 (2), 1508 (2005). DOI: 10.1109/TASC.2005.849149
  94. G.J. Barnes, D. Dew-Hughes, M.D. McCulloch. Supercond. Sci.Technol., 13, 229 (2000). DOI: 10.1088/0953-2048/13/2/319
  95. K.K. Pradhan, S. Chakraverty. Computational Structural Mechanics: Static and Dynamic Behaviors (Academic Press, London, 2019), p. 25--28. DOI: 1016/B978-0-12-815492-2.00010-1
  96. J. Das, R.N. Ray, in 2017 8th Annual Industrial Automation and Electromechanical Engineer. Conf. (IEMECON). (2017), p. 96--100. DOI: 10.1109/IEMECON.2017.8079569
  97. B. Shen, C. Li, J. Geng, X. Zhang, J. Gawith, J. Ma, Y. Liu, F. Grilli, T. Coombs. Superconduc. Sci. Technol., 31 (7), 075005 (2018). DOI: 10.1088/1361-6668/aac294
  98. R. Kulkarni, K. Prasad, T.T. Lie, R. Badcock, C. Bumby, H.-J. Sung. Energies, 10, 1344 (2017). DOI: 10.3390/en10091344
  99. K. Zhang, M. Ainslie, M. Calvi, S. Hellmann, R. Kinjo, T. Schmidt. Supercondu. Scien. Technol., 33, 114007 (2020). DOI: 10.1088/1361-6668/abb78a
  100. C. Lorin, D. Netter, P.J. Masson. IEEE Transactions on Appl. Superconduct., 25, 1 (2015). DOI: 10.1109/TASC.2014.2341255
  101. M.D. Ainslie, T.J. Flack, Z.Hong, T.A. Coombs. The International J. Computation and Mathematics in Electrical and Electronic Engineering, 30, 762 (2011). DOI: 10.1108/03321641111101195
  102. M. Zhang, T.A. Coombs. Supercond. Sci. Technol., 25, 015009 (2011). DOI: 10.1088/0953-2048/25/1/015009
  103. V.M.R. Zermeno, F. Grilli, F. Sirois. Supercond. Sci. Technol., 26, 052001 (2013). DOI: 10.1088/0953-2048/26/5/052001
  104. V.M.R. Zermeno, F. Grilli. Supercond. Sci. Technol., 27, 044025 (2014). DOI: 10.1088/0953-2048/27/4/044025
  105. W. Ta, Y. Li, Y. Gao. AIP Advances, 4, 087131 (2014). DOI: 10.1063/1.4893770
  106. R. Brambilla, F. Grilli, L. Martini. Supercond. Sci. Technol., 20, 16 (2006). DOI: 10.1088/0953-2048/20/1/004
  107. A.M. Campbell. Supercond. Sci. Technol., 22, 034005 (2009). DOI: 10.1088/0953-2048/22/3/034005
  108. N. Amemiya, S.-ichi Murasawa, N. Banno, K. Miyamoto. Physica C: Superconduct., 310, 16 (1998). DOI: 10.1016/S0921-4534(98)00427-4
  109. G. Meunier, Y. Floch, C. Guerin. Magnetics, IEEE Transactions on Appl. Superconduct., 39, 1729 (2003). DOI: 10.1109/TMAG.2003.810200
  110. S. Mykola, G. Fedor. Supercond. Sci. Technol., 32, 115001 (2019). DOI: 10.1088/1361-6668/ab3a85
  111. H. Zhang, M. Zhang, W. Yuan. Supercond. Sci. Technol., 30, 024005 (2016). DOI: 10.1088/1361-6668/30/2/024005
  112. F. Grilli, R. Brambilla, L. Martini. IEEE Transactions on Appl. Superconduct., 17, 3155 (2007). DOI: 10.1109/TASC.2007.902144
  113. F. Grilli, R. Brambilla, F. Sirois, A. Stenvall, S. Memiaghe. Cryogenics, 53, 142 (2013). DOI: 10.1016/j.cryogenics.2012.03.007
  114. C. Hofmann, G. Ries. Supercond. Sci. Technol., 14, 34 (2000). DOI: 10.1088/0953-2048/14/1/306
  115. D.H.N. Dias, E.S. Motta, G.G. Sotelo, R. de Andrade, R.M. Stephan, L. Kuehn, O. de Haas, L. Schultz. IEEE Transactions on Appl. Superconduct., 19, 2120 (2009). DOI: 10.1109/TASC.2009.2019203
  116. D. Dias, E. Motta, G. Sotelo, R. de Andrade Jr. Supercond. Sci. Technol., 23, 075013 (2010). DOI: 10.1088/0953-2048/23/7/075013
  117. G. Ma. IEEE Transactions on Appl. Superconduct., 23, 3601609 (2013). DOI: 10.1109/TASC.2013.2259488
  118. G.-T. Ma, H. Liu, X.-T. Li, H. Zhang, Y.-Y. Xu. J. Appl. Phys., 115, 083908 (2014). DOI: 10.1063/1.4867160
  119. C. Ye, G. Ma, J. Wang. IEEE Transactions on Appl. Superconduct., 26, 1 (2016). DOI: 10.1109/TASC.2016.2615120
  120. T. Sugiura, H. Hashizume, K. Miya. Intern. J. Appl. Electromagnetics in Materials, 2 (3), 183 (1991)
  121. N. Takeda, M. Uesaka, K. Miya. Cryogenics, 34, 745 (1994). DOI: 10.1016/0011-2275(94)90161-9
  122. C. Yon-Do, K. Youn-Hyun, L. Ju, H. Jung-Pyo, L. Jong-Woo. IEEE Transactions on Appl. Superconducti., 11, 2000 (2001). DOI: 10.1109/77.920246
  123. D. Ruiz-Alonso, T.A. Coombs, A.M. Campbell. IEEE Transactions on Appl. Superconduct., 14, 2053 (2004). DOI: 10.1109/TASC.2004.838316
  124. G. Sotelo, R. de Andrade, A. Ferreira. IEEE Transactions on Appl. Superconduct., 19, 2083 (2009). DOI: 10.1109/TASC.2009.2019555
  125. H. Ueda, S. Azumaya, S. Tsuchiya, A. Ishiyama. IEEE Transactions on Appl. Superconduct., 16, 1092 (2006). DOI: 10.1109/TASC.2006.871280
  126. A.O. Hauser. IEEE Transactions on Magnetics, 33, 1572 (1997). DOI: 10.1109/20.582566
  127. J. Zhang, Y. Zeng, J. Cheng, X. Tang. IEEE Transactions on Appl. Superconduct., 18, 1681 (2008). DOI: 10.1109/TASC.2008.2000900
  128. X. Zheng, Y. Yang. IEEE Transactions on Appl. Superconduct., 17, 3862 (2007). DOI: 10.1109/TASC.2007.910150
  129. X. Gou, X. Zheng, Y. Zhou. IEEE Transactions on Appl. Superconduct., 17, 3795 (2007). DOI: 10.1109/TASC.2007.902104
  130. Y. Yoshida, M. Uesaka, K. Miya. IEEE Transactions on Magnetics, 30, 3503 (1994). DOI: 10.1109/20.312694
  131. M. Tsuchimoto, T. Honma. IEEE Transactions on Appl. Superconduct., 4, 211 (1994). DOI: 10.1109/77.334961
  132. M. Tsuda, H. Lee, Y. Iwasa. Cryogenics, 38, 743 (1998). DOI: 10.1016/S0011-2275(98)00049-6
  133. M. Tsuda, H. Lee, S. Noguchi, Y. Iwasa. Cryogenics, 39, 893 (1999). DOI: 10.1016/S0011-2275(99)00125-3
  134. H. Ueda, A. Ishiyama. Supercond. Sci. Technol., 17, S170 (2004). DOI: 10.1088/0953-2048/17/5/016
  135. G. Ma, J. Wang, S. Wang. IEEE Transactions on Appl. Superconduct., 20, 2219 (2010). DOI: 10.1109/TASC.2010.2044795
  136. G. Ma, J. Wang, S. Wang. IEEE Transactions on Appl. Superconduct., 20, 2228 (2010). DOI: 10.1109/TASC.2010.2044936
  137. S. Pratap, C. S. Hearn. IEEE Transactions on Appl.Superconduct. 25, 1 (2015). DOI: 10.1109/TASC.2015.2470670
  138. Y. Lu, Y. Qin. Intern. J. Modern Phys. B, 29, 1542038 (2015). DOI: 10.1142/S0217979215420382
  139. Y. Lu, J. Wang, S. Wang, J. Zheng. J. Superconduct. Novel Magnetism, 21, 467 (2008). DOI: 10.1007/s10948-008-0386-0
  140. L. Queval, G.G. Sotelo, Y. Kharmiz, D.H.N. Dias, F. Sass, V.M.R. Zermeno, R. Gottkehaskamp. IEEE Transactions on Appl. Superconduct., 26, 1 (2016). DOI: 10.1109/TASC.2016.2528989
  141. L. Queval, K. Liu, W. Yang, V.M.R. Zermeno, G.Ma. Supercond. Sci. Technol., 31, 084001 (2018). DOI: 10.1088/1361-6668/aac55d
  142. A. Patel, S.C. Hopkins, A. Baskys, V. Kalitka, A. Molodyk, B.A. Glowacki. Supercond. Sci. Technol., 28, 115007 (2015). DOI: 10.1088/0953-2048/28/11/115007
  143. E. Berrospe-Juarez, V.M.R. Zermeno, F. Trillaud, F. Grilli. Supercond. Sci. Technol., 32, 065003 (2019). DOI: 10.1088/1361-6668/ab0d66
  144. F. Liang, S. Venuturumilli, H. Zhang, M. Zhang, J. Kvitkovic, S. Pamidi, Y. Wang, W. Yuan. J. Appl. Phys., 122, 043903 (2017). DOI: 10.1063/1.4995802
  145. H. Zhang, K. Kails, P. Machura, M. Mueller. IEEE Transactions on Appl. Superconduct., 31 (5), 1 (2021). DOI: 10.1109/TASC.2021.3061021
  146. F. Sass, D.H.N. Dias, G.G. Sotelo, R. de Andrade Jr. Supercond. Sci. Technol., 31, 025006 (2018). DOI: 10.1088/1361-6668/aa9dc1
  147. V.M. Rodriguez-Zermeno, N. Mijatovic, C. Traeholt, T. Zirngibl, E. Seiler, A.B. Abrahamsen, N.F. Pedersen, M.P. Sorensen. IEEE Transactions on Appl. Superconduct., 21, 3273 (2011). DOI: 10.1109/TASC.2010.2091388
  148. M. Osipov, I. Anishenko, A. Starikovskii, D. Abin, S. Pokrovskii, A. Podlivaev, I. Rudnev. Supercond. Sci. Technol., 34, 035033 (2021). DOI: 10.1088/1361-6668/abda5a
  149. J.R. Clem, J.H. Claassen, Y. Mawatari. Supercond. Sci. Technol., 20, 1130 (2007). DOI: 10.1088/0953-2048/20/12/008
  150. W. Yuan, A.M. Campbell, T.A. Coombs. Supercond. Sci. Technol., 22, 075028 (2009). DOI: 10.1088/0953-2048/22/7/075028
  151. L. Prigozhin, V. Sokolovsky. Supercond. Sci. Technol., 24, 075012 (2011). DOI: 10.1088/0953-2048/24/7/075012
  152. I.V. Anischenko, S.V. Pokrovskii, I.A. Rudnev. J. Physics: Conf. Series, 945, 012015 (2018). DOI: 10.1088/1742-6596/945/1/012015
  153. A. Patel, S. Hahn, J.P. Voccio, A. Baskys, S. Hopkins, B.A. Glowacki. Supercond. Sci. Technol., 30, 024007 (2017). DOI: 10.1088/1361-6668/30/2/024007
  154. F. Martins, F. Sass, R. de Andrade Jr. Supercond. Sci. Technol., 32, 044002 (2019). DOI: 10.1088/1361-6668/aafd08
  155. J. Sheng, M. Zhang, Y. Wang, X. Li, J. Patel, W. Yuan. Supercond. Sci. Technol., 30, 094002 (2017). DOI: 10.1088/1361-6668/aa7a51
  156. I. Anishchenko, S. Pokrovskii, I. Rudnev. Bull. Lebedev Phys. Institute, 45, 373 (2018). DOI: 10.3103/S1068335618120011
  157. D. Qiu, W. Wu, Y. Pan, S. Xu, Z.M. Zhang, Z. L. Li, Z.Y. Li, Y. Wang, L. Wang, Y. Zhao, Z.W. Zhang, P. Yang, Z. Hong, Z. Jin. IEEE Transactions on Appl. Superconduct., 27, 1 (2017). DOI: 10.1109/TASC.2017.2652538
  158. Y. Xu, L. Ren, Z. Zhang, Y. Tang, J. Shi, C. Xu, J. Li, D. Pu, Z. Wang, H. Liu, L. Chen. Energy, 143, 372 (2018). DOI: 10.1016/j.energy.2017.10.087
  159. Z. Wang, Y. Tang, L. Ren, J. Li, Y. Xu, Y. Liao, X. Deng. IEEE Transactions on Appl. Superconduct., 27 (4), 1 (2016). DOI: 10.1109/TASC.2016.2646480
  160. S.S. Peng, J. Zheng, W.Y. Li, Y.J. Dai. IOP Conf. Series: Earth and Environmental Sci., 233, 022018 (2019). DOI: 10.1088/1755-1315/233/2/022018
  161. A. Kumar, J.V.M.L. Jeyan, A. Agarwal. Mater. Today: Proceed., 21, 1755 (2020). DOI: 10.1016/j.matpr.2020.01.228
  162. J. Zhu, M. Qiu, B. Wei, H. Zhang, X. Lai, W. Yuan. Energy, 51, 184 (2013). DOI: 10.1016/j.energy.2012.09.044
  163. N. Amaro, J.M. Pina, J. Martins, J.M. Ceballos, in Technological Innovation for the Internet of Things, L.M. Camarinha-Matos, S. Tomic, P. Gra ca, Eds. (Springer Berlin Heidelberg, 2013), p. 449--456
  164. R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lalitha, W. Sampson, J. Schmalzle, P. Wanderer. IEEE Transactions on Appl. Superconduct., 26, 1 (2016). DOI: 10.1109/TASC.2016.2517404
  165. E. Kurbatova, E. Kushchenko, P. Kurbatov, in 21st International Symposium on Electrical Apparatus \& Technologies (SIELA). (2020), p. 1--4. DOI: 10.1109/SIELA49118.2020.9167096
  166. I.S.P. Peixoto, F.F. da Silva, J.F.P. Fernandes, P.J. da C. Branco. IEEE Transactions on Appl. Superconduct., 31, 1 (2021). DOI: 10.1109/TASC.2021.3057570
  167. L. Chen, Z. Deng, B. Deng, J. Zheng. J. Superconduct. Novel Magnetism, (2021). DOI: 10.1007/s10948-020-05780-z
  168. J. Liang, J. Jin, R. Zhang, G. Bai, in IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). (2020), p. 1--2. DOI: 10.1109/ASEMD49065.2020.9276246
  169. I. Anischenko, S. Pokrovskii, I. Rudnev, M. Osipov. Superconduct. Sci. Technol., 32, 9 (2019). DOI: 101088/1361-6668/ab2bbe
  170. Y. Zhang, K. Ding, S. Du. IEEE Transactions on Appl. Superconduct., 31, 1 (2021). DOI: 10.1109/TASC.2021.3062781
  171. G. Homrich, A.F.F. Filho, D.G. Dorrell, B. Dias, in 46th Annual Conference of the IEEE Industrial Electronics Society. (2020), p. 937--942. DOI: 10.1109/IECON43393.2020.9254589
  172. A.R. Kim, J.G. Kim, S. Kim, M. Park, I.K. Yu, K.C. Seong, K. Watanabe. Physica C: Superconduct. Applicat., 471, 1404 (2011). DOI: 10.1016/j.physc.2011.05.204
  173. G. Li, X. Wang, P. Cui, J. Li. Cluster Computing, 22, 2709 (2019). DOI: 10.1007/s10586- 017-1434-y
  174. S.Y. Choi, C.Y. Lee, J.M. Jo, J.H. Choe, Y.J. Oh, K.S. Lee, J.Y. Lim. Energies, 12 (24), 4611 (2019). DOI: 10.3390/en12244611
  175. F.J.M. Dias, A. Polasek, R. de Andrade, E. Rodriguez, F. Costa, G.G. Sotelo, in Simposio Brasileiro de Sistemas Eletricos (SBSE). (2018), p. 1--5. DOI: 10.1109/SBSE.2018.8395656
  176. J. Wang, F. Cai, J. Jiang, L. Zhao, Y. Zhao, Y. Zhang. Physica C: Superconduct. Applicat., 581, 1353809 (2021). DOI: 10.1016/j.physc.2020.1353809
  177. Z. Zhao, S. Xu, K. Liu, W. Yang, J. Li, G. Ma. J. Superconduct. Novel Magnetism, 34, 75 (2021). DOI: 10.1007/s10948-020-05684-y
  178. K. Liu, G. Ma, C. Ye, W. Yang, G. Li, Z. Luo, Y. Cai. IEEE Transactions on Appl. Superconduct., 28, 1 (2018). DOI: 10.1109/TASC.2018.2797098
  179. G.G. Sotelo, F. Sass, M. Carrera, J. Lopez-Lopez, X. Granados. IEEE Transactions on Industrial Electron., 65, 7477 (2018). DOI: 10.1109/TIE.2018.2793252
  180. F. Dong, Z. Huang, D. Qiu, L. Hao, W. Wu, Z. Jin. in 2018 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD) (2018), p. 1--2. DOI: 10.1109/ASEMD.2018.8558945

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.