Numerical Modeling of Shock-Wave Structures in Supersonic Flows of Non-Equilibrium Vibrationally Excited Gas
Khrapov S. S.
1, Khoperskov A. V.
1, Khrapov N. S.
11Volgograd State University, Volgograd, Russia
Email: khrapov@volsu.ru, khoperskov@volsu.ru, pmfb-231_953278@volsu.ru
The dynamics of two-dimensional flows of nonequilibrium gas is considered taking into account relaxation processes, viscosity and thermal conductivity. Based on the numerical gas-dynamic method MUSCL, a parallel computing algorithm is implemented, which allows studying nonlinear wave structures arising in a non-equilibrium medium due to the development of gas-dynamic instabilities with high spatial resolution. A significant increase (by 100-1000 times) in computing performance is shown when using parallel versions of the computing code for GPUs. Numerical modeling of shock-wave structures in a flat two-dimensional channel with injection of a supersonic jet of non-equilibrium gas is carried out. Keywords: non-equilibrium gas, supersonic jets, shock waves, numerical methods, parallel computing on GPUs.
- F.A. Maksimov. Fiziko-khimicheskaya kinetika v gazovoi dinamike, 26 (1), 1160 (2025) (in Russian). http://chemphys.edu.ru/issues/2025-26-1/articles/1160/
- R. Seleznev. Fluid Dynamics, 58, 1584 (2023). DOI: 10.1134/S0015462823602607
- I.A. Shirokov, T.G. Elizarova. Fiziko-khimicheskaya kinetika v gazovoi dinamike, 26 (1), 1173 (2025) (in Russian). http://chemphys.edu.ru/issues/2025-26-1/articles/1173/
- S.T. Surzhikov. Fluid Dynamics, 58 (1), 113 (2023). DOI: 10.1134/S0015462822700033
- A.I. Osipov, A.V. Uvarov. UFN, 162 (11), 1 (1992) (in Russian). DOI: 10.3367/UFNr.0162.199211a.0001
- G.G. Antonov, V.B. Kovshechnikov, F.G. Rutberg. ZhTF, 86 (5), 96 (2016) (in Russian)
- A.V. Avdeed, A.S. Boreisho, I.A. Kiselev, A.V. Morozov, A.E. Orlov. Fotonika, 14 (8), 648 (2020) (in Russian). DOI: 10.22184/1993-7296.FRos.2020.14.8.648.661
- A.I. Osipov, A.V. Uvarov. UFN, 166 (6), 639 (1996) (in Russian)
- V.G. Makaryan, N.E. Molevich. Plasma Sources Sci. Technol., 16 (1), 124 (2007). DOI: 10.1088/0963-0252/16/1/017
- S.S. Khrapov. Fluid Dynamics, 59 (4), 899 (2024). DOI: 10.1134/S0015462824602584
- S.S. Khrapov. Fiziko-khimicheskaya kinetika v gazovoi dinamike, 25 (7), 1151 (2024) (in Russian). http://chemphys.edu.ru/issues/2024-25-7/articles/1151/
- S.S. Khrapov, G.S. Ivanchenko, V.P. Radchenko, A.V. Titov. ZhTF, 93 (12), 1727 (2023) (in Russian). DOI: 10.61011/JTF.2023.12.56805.f213-23
- J. McKevitt, E.I. Vorobyov, I. Kulikov. J. Parallel Distributed Computing, 195, 104977 (2025). DOI: 10.1016/j.jpdc.2024.104977
- A. Radhakrishnan, H. Le Berre, B. Wilfong, J.-S. Spratt, M. Rodriguez, T. Colonius, S.H. Bryngelson. Comp. Phys. Commun., 302, 109238 (2024). DOI: 10.1016/j.cpc.2024.109238
- B. van Leer, J. Comp. Phys., 32 (1), 101 (1979)
- S.S. Khrapov, A.V. Khoperskov. Supercomp. Frontiers and Innovations, 11 (3), 27 (2024). DOI: 10.14529/jsfi240302
- E.A. Kovach, S.A. Losev, A.L. Sergievskaya, N.A. Khrapak. Fiziko-khimicheskaya kinetika v gazovoi dinamike, 10, 332 (2010) (in Russian). http://chemphys.edu.ru/issues/2010-10/articles/332/
- E.F. Toro, M. Spruce, W. Speares. Shock Waves, 4 (1), 25 (1994)
- S. Khrapov. Matematicheskaya fizika i komp'yuternoe modelirovanie, 28 (1), 60 (2025) (in Russian). DOI: 10.15688/mpcm.jvolsu.2025.1.5
- V. Radchenko, S. Khrapov, A. Khoperskov. in 2024 6th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). IEEE Xplore (Lipetsk, Russian Federation, 2024), p. 533. DOI: 10.1109/SUMMA64428.2024.10803831
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.