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The dynamics of two-dimensional flows of nonequilibrium gas is considered taking into account relaxation

processes, viscosity and thermal conductivity. Based on the numerical gas-dynamic method MUSCL, a parallel

computing algorithm is implemented, which allows studying nonlinear wave structures arising in a non-equilibrium

medium due to the development of gas-dynamic instabilities with high spatial resolution. A significant increase

(by 100−1000 times) in computing performance is shown when using parallel versions of the computing code

for GPUs. Numerical modeling of shock-wave structures in a flat two-dimensional channel with injection of a

supersonic jet of non-equilibrium gas is carried out.
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Introduction

Supersonic non-equilibrium gas-dynamic flows can occur

in nozzles of jet engines [1,2] during hypersonic flow

around aerodynamic surfaces [3,4]. Nonequilibrium of a

medium is induced by a difference of static and vibrational

temperatures in a gas [5]. Due to various physical pro-

cesses (electrical and VHF discharges, shockwaves during

hypersonic flow, fast cooling of the supersonic jets), the

vibrational gas temperature related to vibrational energy

levels of polyatomic molecules can exceed the static gas

temperature in several times [4,6,7]. In this case, relaxation

processes start significantly affecting dynamics and a struc-

ture of the gas-dynamic flows [8–12]. At certain conditions,

the non-equilibrium vibrationally-excited gas can become

acoustically active and at a nonlinear stage of evolution

of acoustic and thermal instabilities it can form variously-

structured shockwaves (SW) [10,11]: a sawtooth system of

weak shockwaves and a quasi-steady-state system of shock-

wave pulses (SWP).
An important factor during numerical modeling of the

non-equilibrium gas-dynamic flows with high spatial resolu-

tion is computational code performance, which affects both

a result obtaining time as well as completeness of numerical

solutions during mass calculations with various values of

model parameters [13,14].
The present study is aimed at developing and testing

an effective computational tool with high spatial resolution

and accuracy for studying nonlinear wave structures that

are formed in supersonic non-equilibrium flows of the

vibrationally-excited gases at the various stages of evolu-

tion of gas-dynamic instabilities (an acoustic, thermal, of

a tangential velocity break, corrugated instability of the

shockwave). The two-dimensional numerical model was

developed using a gas-dynamic modeling method MUSCL

(Monotone Upwind Scheme for Conservation Laws) [15]
that was adapted for integrating two-dimensional equations

of non-equilibrium gas dynamics [10,11]. A parallel code of

the numerical model is realized using technologies CUDA

and GPUDirect for hybrid computational systems (super-
computers) with graphic processors (CPU–multi-GPU) [16].

1. Mathematical model of the
vibrationally-excited gas

We will consider dynamics of the non-equilibrium

vibrationally-excited gas, which in a two-dimensional region

(x , y) is characterized by a flow velocity u = {u, v}, a

density ̺, a pressure p, a static T and a vibrational TV

temperature. In the non-equilibrium vibrationally-excited

gas TV > T . The dynamics of the non-equilibrium gas taking

into account viscosity, thermal conductivity, vibrationally-

translational relaxation (V T -relaxation), heating and cooling

will be described by the following conservative system of

equations of fluid dynamics [4,10,11]:
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E = ̺
(

0.5|v|2 + ε
)

, ε is a specific internal energy

(translational and rotational degrees of freedom), εV is a

specific vibrational energy, σxx , σxy , σyy are components of a

viscous stress tensor, ̹ is a thermal conductivity coefficient,

∇ = {∇x ,∇y} =
{

∂
∂x
, ∂
∂y

}

, ε̇V is a specific power of

vibrationally-translational energy exchange, which is calcu-

lated using the Landau−Teller formula: ε̇V = (εe
V − εV ) /τ ,

where εe
V ≡ εV (T ) is a specific vibrational energy in an

equilibrium state when TV = T , τ is a time of vibrational

relaxation. The specific vibrational energy of the gas εV ,

which depends on the respective vibrational temperature

TV , will be written as follows [4,10,11]:

εV (TV ) =
R

M

NV
∑

ℓ=1

rℓθℓ

exp (θℓ/TV ) − 1
,

where NV is a number of vibrational modes, θℓ is a

typical vibrational temperature of the ℓ-the mode, rℓ is a

degeneracy degree of the ℓ-mode.

The time of vibrational relaxation will be generalized as

follows [10,11]:

τ =
pAT n

p

exp
{

a0 + a1T
−1/3 + a2T

−2/3 + a3T
1/3

}

1− m exp (−θ∗/T )
,

where pA is an atmospheric pressure, θ∗ is a minimum

one the typical temperatures of the vibrational modes [17],
calibration coefficients of the relaxation model area i , n and

m [4,10,11,17].
The system of equations (1) is closed by the equation

of state for the ideal gas: p = R ̺T/M, ε = p/[(γ − 1)̺],
where M and γ are a molar mass and an adiabatic index of

the gas, R is an universal gas constant.

2. Numerical method and the parallel
algorithm

The numerical solution of the system of equations (1)
is based on the method MUSCL [10,11,15]. After dis-

cretization of continuous magnitudes U(x , y, t) in nodes of

a space time grid: U(x , y, t) → U(x i , y j , tn) ≡ Un
i, j , where

tn+1 = tn + 1tn (n = 0, 1, . . . is a time layer), 1t is a time

step, x i+1 = x i + 1x (i = 0, . . . , Nx + 4), y j+1 = y j + 1y

( j = 0, . . . , Ny + 4), 1x = Lx/Nx and 1y = Ly/Ny are

sizes of spatial cells, Lx and Ly are sizes of the computation

region, Nx and Ny are a number of computation cells by the

x - and y -coordinates, respectively. The numerical algorithm

of the method MUSCL will be written as

Un+1
i, j =Un

i, j + 1tn

(

F̂i−1/2, j − F̂i+1/2, j

1x

+
Ĝi, j−1/2 − Ĝi, j+1/2

1y
+ 8̂i, j

)

, (2)

where fractional indices i ± 1/2 and j ± 1/2

correspond to boundaries of cells of the

computation grid (x i±1/2 = x i±1x/2, y j±1/2 =

= y j±1y/2), F̂i±1/2, j = 1
1tn

tn+1
∫

tn

Fi±1/2, j(t)dt, Ĝi, j±1/2 =

= 1
1tn

tn+1
∫

tn

Gi, j±1/2(t)dt, 8̂i, j = 1
1tn

tn+1
∫

tn

8i, j(t)dt . At each

moment of time, values of the gas-dynamic fluxes

F̂i±1/2, j and Ĝi, j±1/2 are calculated at boundaries of the

computation cells using approximate Riemann solvers

HLL/HLLC [18]. The second order of accuracy in the

method MUSCL is achieved by using a predictor-corrector

algorithm for time advancement and piecewise linear

reconstruction of grid functions using TVD-limiters (Total
Variation Diminishing) [15].

In order to increase performance of numerical modeling

of the supersonic gas-dynamic flows on the computation

cells with tens and hundreds of millions cells, our algorithm

of the method MUSCL (2) was paralleled using the tech-

nologies OpenMP-CUDA and GPUDirect that are used in

hybrid computational systems with several graphic proces-

sors (CPU–multi-GPUs). Using GPUDirect makes it possi-

ble to provide fast direct data exchange between the GPUs

avoiding CPU due to an interface NVLINK [14,16,19]. The
implemented parallel algorithm OpenMP–CUDA for the

computational systems CPU–multi-GPUs makes it possible

to accelerate calculations in 100−1000 times as compared

to parallel versions of the code for CPU [19].

3. Results of numerical modeling

In the numerical model (2), we transit to dimensionless

magnitudes: f̄ = f /l f , where l f is a typical scale of the

magnitude f . Typical scales of the numerical models

according to the studies [10,11,19] are: lt = τ0, lu = c0,

lxy = c0τ0, lT = T0, lp = p0, l̺ = ̺0/γ , where a lower

index ≪ 0 ≫ corresponds to initial spatially-homogeneous

distributions of the gas and c0 =
√
γ p0/̺0 is a speed of

sound.

Investigation of nonlinear dynamics of the gas-dynamic

instabilities in the non-equilibrium gas (see the studies [10–
12,19]) requires using high spatial resolution in the numeri-

cal models, which is determined by an optimal value of the

step of the computation cell: 1x̄ = 1ȳ = 0.01.

Let us consider a model problem on outflow of

the supersonic jet of the non-equilibrium vibrationally-

excited gas (T̄ ( jet) = 0.3, T̄
( jet)

V = 3, p̄( jet) = 1, ū( jet) = 2)
into the flat channel with the equilibrium gas at rest

(T̄ (ch) = T̄
(ch)

V = 0.3, p̄(ch) = 1, ū(ch) = 0). The jet inflows

at a left boundary of the computation region with the

Mach number M ≈ 3.65, while at a right boundary

free-flow conditions are pre-defined. At the cooled

channel walls (an upper and a lower boundary of the

computation region),
”
solid wall“ conditions are pre-defined

(sticking non-flowing) and a constant surface temperature

T̄ex = 0.3 is maintained. Values of the dimensionless

parameters of the mathematical model are selected
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Figure 1. Evolution of the shock-wave structure of the flow in a flat channel when injecting the non-equilibrium vibrationally-excited gas

jet. Distributions of the velocity ū are shown at various times: a — t̄ = 20; b — t̄ = 60; c — t̄ = 90.

according to basic models [10,11,19]: γ = 1.4, ā1 = 10,

ā2 = ā3 = n = m = 0, θ̄∗ = θ̄1 = 6. The channel sizes are

L̄x = 102.4 and L̄y = 10.24 and the respective number of

the computation cells is Nx = 1024 and Ny = 10240. The

total number of the computation cells is N = 10 485 760.

A cross size of the jet is D̄
( jet)
y = 2.56 or N

( jet)
y = 256. The

supersonic jet is injected along a middle line of the channel

with a slight downshift by the magnitude 1ȳ , which is

required for evolution of unstable bending modes of the jet.

Fig. 1 shows dynamics of progress of the shock-wave

structures in the flat channel during outflow of the super-

sonic jet of the non-equilibrium gas. The initial stage of evo-

lution (Fig. 1, a) first included formation of the shockwave

related to supersonic outflow of the gas into the stationary

medium. Then, behind the front of the this shockwave a

jet outflow area forms the shock-wave structures that are

induced by progress of the unstable modes of the jet (of
Kelvin-Helmholtz ones and reflective acoustic harmonics).
At the same time, intensity of these shock-wave structures

in the non-equilibrium jet turns out to be higher than in the

non-equilibrium jet [19]. It is related to acoustic activity of

the non-equilibrium vibrationally-excited gas, which results

in evolution of acoustic instability [10–12,19]. During

further evolution (Fig. 1, b, c), along with symmetric (pinch)
modes of the jet, instability of antisymmetric (bending)
modes of the jet also evolves and results in bending of the

jet flow and destruction of the jet in the range x̄ > 50. At

the nonlinear stage of evolution the unstable modes of the

jet form a complex shock-wave system in the channel.

The shock-wave and vortical flow structure at the time

t̄ = 90 is shown in detail in Fig. 2. The complex system

of shockwaves and vortices can be conveniently analyzed in

shading maps of distribution of the gas-dynamic magnitudes

(Fig. 2, a), which allow selecting flow heterogeneities by

visualizing gradients of these magnitudes (similar to the

schlieren method in physical experiments). By distribution

of the static (T̄ ) and the vibrational (T̄V ) temperature in

Fig. 2, b, c, the vortex structures and the oblique shockwaves

(only for T̄ ) are well selected. Along with higher intensity of

the shock-wave and vortical structures, the non-equilibrium

jet flows are also characterized by significant gas heating in

the jet destruction area (35 < x̄ < 65), which is caused by

transfer of vibrational energy into thermal one behind the

shockwave front and in the zone of intense vortex flows. As

it is seen in Fig. 2, b, c, in the range (x̄ > 70) the gas flow

is almost an equilibrium one T̄V ∼ T̄ .

Performance of the computational code can be conve-

niently analyzed by means of time of processing a single

computation cell in the numerical algorithm tcell . In

our parallel realization OpenMP–CUDA–GPUDirect of the

computational code for GPUs this time for N=10 485 760

is: t
(1GPU)
cell =1.8 ns, t

(2GPU)
cell =0.95 ns, t

(4GPU)
cell = 0.49 ns,

t
(8GPU)
cell = 0.27 ns. The best time of processing the single

computation cell in the parallel OpenMP version of the code

for CPUs (40 cores) is t
(CPU)
cell = 325 ns.

Let us note that our parallel code OpenMP–CUDA–
GPUDirect can be scaled for modeling the more complex

three-dimensional flows of the non-equilibrium gas. At the

Technical Physics, 2025, Vol. 70, No. 12
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Figure 2. Flow structure (vortical and shock-wave) in the flat channel when injecting the non-equilibrium vibrationally-excited gas jet.

The following distributions are shown at the time t̄ = 90: a — of the density ¯̺ (a shading representation); b — of the temperature T̄ ;

c — of the vibrational temperature T̄V .

same time, our estimates show that the time of processing

the single computation cell will increase in 1.5−1.7 times

due to appearance of an additional equation for the z -

component of the velocity as well as additional calculations

of inclinations during piecewise linear reconstruction of

the grid functions and fluxes of conservative magnitudes

U along the z -direction. In the two-dimensional version

of the code, a capacity of the required GPU memory is

∼ 240 bytes per one computation cell, while a transition

into three-dimensional implementation will required

∼ 384 bytes per cell.

Conclusions

Based on the numerical gas-dynamic method MUSCL,

the parallel version OpenMP–CUDA–GPUDirect of the

computational code is realized for modeling the two-

dimensional supersonic flows of the non-equilibrium

vibrationally-excited gas with various models of the time

of VT-relaxation on the hybrid supercomputers with the

graphic processors (CPU–multi-GPU). The study has

used the supercomputers NVIDIA DGX-1 (VolSU) and

Lomonosov 2 (Volta 1,2 — MSU) with the graphic

processors NVIDIA V100. The transition into the parallel

version of the code for GPUs made it possible to accelerate

the calculations in 180−1200 times as compared to the

parallel code for CPUs.

The designed parallel algorithm of the method MUSCL

was tested on the two-dimensional problem of numerical

modeling of dynamics of the supersonic flows of the non-

equilibrium vibrationally-excited gas in the flat channel.

It is shown that during outflow of the non-equilibrium

supersonic jet into the equilibrium gas at rest, a complex

shock-wave and vortical structure is formed in the channel,

whose intensity turns out to be higher as compared to

the case of injection of the equilibrium jets. Besides, due

to evolution of gas-dynamic instabilities of the pinch and

bending modes, the gas is significantly heated as a result

of transfer of vibrational energy into thermal one by intense

relaxation processes.

The results of numerical modeling of dynamics of the su-

personic flows of the non-equilibrium vibrationally-excited

Technical Physics, 2025, Vol. 70, No. 12
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gas, which are obtained in the study, and the shock-wave

and vortical structures detected in the numerical models

can be useful when designing new types of detonation jet

engines and gas-dynamic lasers [7] as well as experimental

energy installations for generating powerful shock-wave

pulses [20].
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