Physics of the Solid State
Volumes and Issues
Synthesis, crystal structure, phase transitions and dielectric relaxation in La3+ modified Sr0.5Ba0.5Nb2O6 ceramics
Makinyan N.V. 1, Bulanova A. L.2, Zabolotnyi A. A. 2, Pavlenko A. V. 1
1Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
2Southern Federal University, Rostov-on-Don, Russia
Email: norair.makinyan@yandex.ru

PDF
The crystal structure, dielectric and ferroelectric characteristics of Sr0.5Ba0.5Nb2O6 ceramics modified at the synthesis stage beyond the stoichiometry of 1 wt.% (weight percent) La2O3 (SBN50-La) have been studied. It is shown that ceramics are pure, La3+ cations are embedded in A1 positions, and the parameters of the tetragonal unit cell are a=12.4800 Angstrem, c=3.9354 Angstrem. Analysis of the ε'(T,f) and ε''(T,f) dependences revealed that SBN50-La is a relaxor ferroelectric. It is shown that the dielectric response of SBN50-La ceramics at T=83-493 K and f=20-106 Hz has a contribution from three relaxation processes. The mechanisms of these processes are discussed. Keywords: strontium barium niobate, dielectric characteristics, relaxor ferroelectric, dielectric relaxation.
  1. M.E. Lines, A.M. Glass. Principles and applications of ferroelectrics and related materials. Oxford university press, 2001
  2. A.K. Bain, P. Chand. Ferroelectrics: Principles and applications, John Wiley \& Sons, Inc. (2017)
  3. Y. Chen, D. Zhang, Z. Peng, M. Yuan, X. Ji. Front. Mater. 8, 7, 1 (2021)
  4. T. Bian, T. Zhou, Y. Zhang. Energies 15, 22, 8442 (2022)
  5. R.B. Maciolek, S.T. Liu. J. Electron. Mater. 4, 3, 517 (1975)
  6. A.M. Glass. J. Appl. Phys. 40, 12, 4699 (1969)
  7. T. Lukasiewicz, M.A. Swirkowicz, J. Dec, W. Hofman, W. Szyrski. J. Cryst. Growth 310, 7-9, 1464 (2008)
  8. A.M. Glass. Appl. Phys. Lett. 13, 4, 147 (1968)
  9. S. Ivanov, E.G. Kostsov. IEEE Sens. J. 20, 16, 9011 (2020)
  10. S. Gupta, S. Sharma, T. Ahmad, A.S. Kaushik, P.K. Jha, V. Gupta, M. Tomar. Mater. Chem. Phys. 262, 124300 (2021)
  11. P.B. Jamieson, S.C. Abrahams, J.L. Bernstein. J. Chem. Phys. 48, 11, 5048 (1968)
  12. T.S. Chernaya, B.A. Maksimov, T.R. Volk, L.I. Ivleva, V.I. Simonov. FTT 42, 9, 1668 (2000). (in Russian)
  13. S. Podlozhenov, H.A. Graetsch, J. Schneider, M. Ulex, M. Wohlecke, K. Betzler. Acta Crystallogr. Sect. B Struct. Sci. 62, 6, 960 (2006)
  14. S.T. Liu, A.S. Bhalla. Ferroelectrics 51, 1, 47 (1983)
  15. M. Said, T.S. Velayutham, W.H. Abd Majid. Ceram. Int. 43, 13, 9783 (2017)
  16. Y. Li, J. Liu, Y. Zhang, Y. Zhou, J. Li, W. Su, J. Zhai, H. Wang, C. Wang. Ceram. Int. 42, 1, 1128 (2016)
  17. S.T. Liu, R.B. Maciolek, J.D. Zook, B. Rajagopalan. Ferroelectrics 87, 1, 265 (1988)
  18. K. Buse, R. Pankrath, E. Kratzig. Opt. Lett. 19, 4, 260 (1994)
  19. M.-H. Li, T.-C. Chong, X.-W. Xu, H. Kumagai. J. Cryst. Growth 225, 2-4, 479 (2001)
  20. K. Umakantham, S.N. Murty, K. Sambasiva Rao, A. Bhanumathi. J. Mater. Sci. Lett. 6, 5, 565 (1987)
  21. J. Portelles, I. Gonzalez, A. Kiriev, F. Calderon, S. Garcia, N. Calzada. J. Mater. Sci. Lett. 12, 23, 1871 (1993)
  22. H. Amori n, F. Guerrero, J. Portelles, I. Gonzalez, A. Fundora, J. Siqueiros, J. Valenzuela. Solid State Commun. 106, 8, 555 (1998)
  23. I.A. Santos, D. Garcia, J.A. Eiras. Ferroelectrics 257, 1, 105 (2001)
  24. Y. Yao, C.L. Mak, K.H. Wong, S. Lu, Z. Xu. Int. J. Appl. Ceram. Technol. 6, 6, 671 (2009)
  25. E.G. Kostsov. Ferroelectrics 314, 1, 169 (2005)
  26. V. Petvrivcek, M. Dusek, L. Palatinus. Zeitschrift Fur Krist. --- Cryst. Mater. 229, 5, 345 (2014)
  27. T.R. Volk, V.Yu. Salobutin, L.I. Ivleva, N.M. Polozkov, R. Pankra, M. Veleke. FTT 42, 11, 2066 (2000). (in Russian)
  28. T.S. Velayutham, N.I.F. Salim, W.C. Gan, W.H. Abd. Majid. J. Alloys Compd. 666, 334 (2016)
  29. L. Wei, Z. Yang, X. Chao, H. Jiao. Ceram. Int. 40, 4, 5447 (2014)
  30. M. Said, T.S. Velayutham, W.C. Gan, W.H. Abd Majid. Ceram. Int. 41, 5, 7119 (2015)
  31. M.A. Mohiddon, K.L. Yadav. J. Phys. D. Appl. Phys. 41, 22, 225406 (2008)
  32. P.K. Patro, A.R. Kulkarni, S.M. Gupta, C.S. Harendranath. Phys. B Condens. Matter 400, 1-2, 237 (2007)
  33. Yu.S. Kuz'minov. Segnetoelektricheskie kristally dlya upravleniya lazernym izlucheniem. Nauka, Moskva, (1982) (in Russian)
  34. H. Liu, B. Dkhil. J. Alloys Compd. 929, 167314 (2022)
  35. A.S. Bogatin, A.V. Turik. Protsessy relaksatsionnoi polyarizatsii v dielektrikakh s bol'shoi skvoznoi elektroprovodnost'yu. Feniks, Rostov-na-Donu (2013) (in Russian)
  36. E. Buixaderas, C. Kadlec, M. Kempa, V. Bovtun, M. Savinov, P. Bednyakov, J. Hlinka. J. Dec. Sci. Rep. 7, 1, 18034 (2017)
  37. J. Dec, W. Kleemann, V.V. Shvartsman, D.C. Lupascu, T. ukasiewicz. Appl. Phys. Lett. 100, 5, (2012).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru