In situ investigation of filament growth in films of stabilized zirconium dioxide by contact capacitance atomic force microscopy
Filatov D. O.1, Sorochkina E. D.1, Antonov D. A.1, Antonov I. N1, Gorshkov O. N.1
1Lobachevsky State University, Nizhny Novgorod, Russia
Email: dmitry_filatov@inbox.ru
The contact capacitance atomic force microscopy method was used to study processes of electroforming and resistive switching in a thin film of yttrium-stabilized zirconium dioxide on a conducting substrate. During linear voltage sweep between a probe and the substrate, there was non-linear increase of probe-sample capacitance related to formation of cluster that consisted of oxygen vacancies (a conducting filament) in the dielectric layer under the probe. With subsequent cyclic switching by sawtooth voltage, there was cyclic increase and decrease of probe-sample capacitance, which was related to respective changes of filament sizes under effect of an electric field between the probe and the substrate. Results of the present study demonstrate capabilities of the contact capacitance microscopy method for studying filament dynamics during resistive switching in the oxide films. Keywords: memristor, resistive switching, filament, contact capacitance atomic force microscopy, stabilized zirconium dioxide.
- Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin, X. Wen, C. Ye. Sci. Technol. Adv. Mater. 24, 1, 2162323 (2023). DOI: 10.1080/14686996.2022.216232
- D. Zhu, Y. Li, W. Shen, Z. Zhou, L. Liu, X. Zhang. J. Semicond. 38, 7, 071002 (2017). DOI: 10.1088/1674-4926/38/7/071002
- J. Zhu, T. Zhang, Yu. Yang, R. Huang. Appl. Phys. Rev. 7, 1, 011312 (2020). DOI: 10.1063/1.5118217
- F. Zahoor, T.Z.A. Zulkifli, F.A. Khanday. Nanoscale Res. Lett. 15, 1, 90 (2020). DOI: 10.1186/s11671-020-03299-9
- D. Ielmini. Semicond. Sci. Technol. 31, 6, 063002 (2016). DOI: 10.1088/0268-1242/31/6/063002
- S.H. Lee, X. Zhu, W.D. Lu. Nano Res. 13, 1228 (2020). DOI: 10.1007/s12274-020-2616-0
- Y. Yang, Y. Takahashi, A. Tsurumaki-Fukuchi, M. Arita, M. Moors, M. Buckwell, A. Mehonic, A.J. Kenyon. J. Electroceramics 39, 73 (2017). DOI: 10.1007/s10832-017-0069-y
- M. Lanza. Materials 7, 2155 (2014). DOI: 10.3390/ma7032155
- M.A. Ryabova, D.A. Antonov, A.V. Kruglov, I.N. Antonov, D.O. Filatov, O.N. Gorshkov. J. Phys.: Conf. Ser. 2086, 01220 (2021). DOI: 10.1088/1742-6596/2086/1/012205
- C. Daniel Frisbie. In: Encyclopedia of Physical Science and Technology (3rd Edition) / Ed. R.A. Meyers. Elsevier, Amsterdam (2003). P. 469--484. DOI: 10.1016/B0-12-227410-5/00675-X
- E.W. Lim, R. Ismail. Electronics 4, 3, 586 (2015). DOI:10.3390/electronics4030586
- Kontaktnaya Skaniruyushchaya Emkostnaya mikroskopiya (Izmeritel'nyi vkladysh AU030). Rukovodstvo po ekspluatatsii. NT-MDT. M. (2010). 28 s.] (in Russian)
- D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams. Nat. Mater. 453, 80 (2008). DOI: 10.1038/nature06932
- L.D. Landau, E.M. Lifshitz. Teoriya uprugosti, Fizmatlit, M. (2003). 269 s. (in Russian)
- D.O. Filatov, D.A. Antonov, O.N. Gorshkov, A.P. Kasatkin, D.A. Pavlov, V.N. Trushin, I.A. Antonov, M.E. Shenina. In: Atomic Force Microscopy (AFM): Principles, Modes of Operation and Limitations / Ed. H. Yang. Nova Science, N.Y. (2014). P. 335
- S. Tikhov, O. Gorshkov, I. Antonov, A. Morozov, M. Koryazhkina, D. Filatov. Adv. Condens. Matter Phys. 8, 2028491 (2018). DOI 10.1155/2018/2028491
- A. Mikhaylov, A. Belov, D. Korolev, I. Antonov, V. Kotomina, A. Kotina, E. Gryaznov, A. Sharapov, M. Koryazhkina, R. Kryukov, S. Zubkov, A. Sushkov, D. Pavlov, S. Tikhov, O. Morozov, D. Tetelbaum. Adv. Mater. Technol. 5, 1, 1900607 (2020). DOI: 10.1002/admt.201900607
- G.P. Cousland, X.Y. Cui, S. Ringer, A.E. Smith, A.P.J. Stampfl, C.M. Stampfl. J. Phys. Chem. Solids 75, 11, 1252 (2014). DOI: 10.1016/j.jpcs.2014.05.015
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.