Analytical model for calculating the spatial resolution of 2D IR photodiode arrays with small pixel size
V.V. Vasiliev1, A.V. Vishnyakov1, V.A. Stuchinsky1
1Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Division, Novosibirsk, Russia
Email: vas@isp.nsc.ru
An analytical model is proposed to describe the spatial resolution of 2D IR photodiode arrays with a diode-size value close to the pixel size. The model allows one to analyze the important case of diode arrays with small pixel sizes and an arbitrary ratio of the latter to the diffusion length of charge carriers and to the absorber-layer thickness. In addition to the standard Sinc-multiplier, the expression for the modulation transfer function of the analyzed diode arrays includes a factor that describes the deviation from the Sinc-multiplier, this deviation increasing with spatial frequency. The effect due to the additional factor becomes more appreciable with decreasing the array pitch and/or with increasing the photosensitive-layer thickness. A quantitative comparison of calculations within the proposed model with the calculations using the Monte Carlo method for modeling the diffusion of photogenerated charge carriers is performed. Keywords: analytical model, 2D IR detector, spatial resolution, Nyquist frequency, line spread function, modulation transfer function.
- A. Rogalski, P. Martyniuk, M. Kopytko. Rep. Prog. Phys., 79, 046501 (2016). DOI: 10.1088/0034-4885/79/4/046501
- R.G. Driggers, R.H. Vollmerhausen, J.P. Reynolds, J.D. Fanning, G.C. Holst. Opt. Engineer., 51 (6), 063202 (2012). DOI: 10.1117/1.OE.51.6.063202
- N.K. Dhar, R. Dat, A.K. Sood. Advances in Infrared Detector Array Technology, p. 182, Chapter 7 in S.L. Pyshkin, J. Ballato (editors). Optoelectronics --- Advanced Materials and Devices (InTech., 2013), p. 149-190. DOI: 10.5772/51665
- J. Farrell, F. Xiao, S. Kavusi. Resolution and light sensitivity tradeoff with pixel size, Proc. of Electronic Imaging Conference (San Jose, California, United States, 2006), v. 6069, Digital Photography II; 60690N (2006). DOI: 10.1117/12.646805
- W.E. Tennant, D.J. Gulbransen, A. Roll, M. Carmody, D. Edwall, A. Julius, P. Dreiske, A. Chen, W. McLevige, S. Freeman, D. Lee, D.E. Cooper, E. Piquette. J. Electron. Mater., 43 (8), 3041 (2014). DOI: 10.1007/s11664-014-3192-4
- O. Gravrand, N. Baier, A. Ferron, F. Rochette, J. Berthoz, L. Rubaldo, R. Cluzel. J. Electron. Mater., 43 (8), 3025 (2014). DOI: 10.1007/s11664-014-3185-3
- J. Berthoz, R. Grille, L. Rubaldo, O. Gravrand, A. Kerlain, N. Pere-Laperne, L. Martineau, F. Chabuel, D. Leclercq. J. Electron. Mater., 44 (9), 3157 (2015). DOI: 10.1007/s11664-015-3857-7
- V.A. Stuchinsky, A.V. Vishnyakov, V.V. Vasiliev, J. Opt. Technol., 91 (2), 96 (2024). DOI: 10.1364/JOT.91.000096
- I.I. Lee, V.G. Polovinkin. IEEE Trans. on Electron. Devices, 67 (8), 3175 (2020)
- L. Martineau, L. Rubaldo, F. Chabuel, O. Gravrand, in: Proc. SPIE 8889, Sensors, Systems, and Next-Generation Satellites XVII, 88891B (2013), DOI: 10.1117/12.2028883
- G.D. Boreman, Modulation transfer function in optical and electro-optical systems. Second edition. (2021), DOI: 10.1117/3.419857
- K.O. Boltar, P.V. Vlasov, P.S. Lazarev, A.A. Lopukhin, V.F. Chishko. Prikladnaya fizika, 1, 18 (2020) (in Russian)
- B. Appleton, T. Hubbard, A. Glasmann, E. Bellotti. Opt. Express, 26 (5), 5310 (2018). DOI: 10.1364/OE.26.005310
- M. Vallone, M. Goano, F. Bertazzi, G. Ghione, S. Hanna, D. Eich, H. Figgemeier, J. Electron Device Society, 6, 664 (2018). DOI: 10.1109/JEDS.2018.2835818
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.