Phase transitions in superconductors with current under non-uniform heat removal conditions
Malginov V. A.
1, Fleishman L. S.
21Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2 Sergo Ordzhonikidze Russian State University for Geological Prospecting, Moscow, Russia
Email: malginovva@lebedev.ru
A study was made of phase transitions to normal state in high-temperature superconducting wires with current due to gaseous nitrogen occurrence around some part of the wire. The simultaneous presence of liquid and gaseous refrigerant along the wire length means that heat removal non-uniformity from its surface takes place that results in normal zone formation in the wire with current in the site with reduced heat removal. As a result, a jump-like change in the current and voltage occurs that may be used for signal generation by a superconducting sensor in alarm level indicator and/or gaseous inclusion indicator in liquid nitrogen. The sensor's ability to work is based upon the wire normal state stability maintenance after its operation and upon the reliability of the transient signal registration from the low resistance normal region. These was realized by means of AC current measurements using a transformer-based power supply. The results obtained for the first time are presented of physical modelling of the transients in the superconducting sensors depending on a stabilizing layer presence in the wire, the current supply method (cooled/non-cooled leads), the wire structure (single/bifilar). The importance of the obtained results for applications is confirmed by the recommendations developed on their basis concerning the superconducting sensor application in the alarm indicators for the two types of nitrogen cryostats: bulk type (for winding refrigeration) or long type (cryostat shell for superconducting cable). Keywords: high-temperature superconductor, phase transition, heat balance, normal zone, superconducting gaseous phase sensor.
- E.P. Volkov, L.S. Fleishman, V.S. Vysotsky, A.A. Nosov, V.V. Kostyuk, V.P. Firsov, S.F. Osetrov, A.N. Kiselev. V sb.: Innovatsionnye tekhnicheskie resheniya v programme NIOKR PAO "FSK EES", pod.red. A.E. Murova (AO "NTC FSK EES", M., 2016), s. 32 (in Russian)
- V.V. Zubko, S.Yu. Zanegin, S.S. Fetisov, V.S. Vysotsky, A.A. Nosov, E.S. Otabe, T. Akasaka. Sverkhprovodimost': fundamental'nye i prikladnye issledovaniya 1, 1 (53) (in Russian). DOI: 10.62539/2949-5644-2024-0-1-53-62
- T. Masuda, M. Watanabe, T. Mimura, M. Tanazawa, H. Yamaguchi. J. Phys.: Conf. Ser., 1559, 012083 (2020). DOI: 10.1088/1742-6596/1559/1/012083
- V.R. Romanovskii. Tech. Phys., 60 (1), 86 (2015). DOI: 10.1134/S106378421501020X
- V.A. Malginov, A.V. Malginov, L.S. Fleishman, A.S. Rakitin. Tech. Phys., 62 (10), 1516 (2017). DOI: 10.1134/S1063784217100176
- D.A. Grigor'ev, O.Yu. Gusev, Yu.P. Gusev, N.O. Posokhov. Therm. Eng., 70 (8), 624 (2023). DOI: 10.1134/S0040601523080037
- V.A. Malginov, A.V. Malginov, L.S. Fleishman. Tech. Phys., 64 (12), 1759 (2019). DOI: 10.1134/S106378421912017X
- V.A. Malginov, L.S. Fleishman. Tech. Phys. Lett., 50 (4), 71 (2024). DOI: 10.61011/PJTF.2024.08.57518.19785
- V.S. Vysotsky, S.S. Fetisov, A.A. Nosov. Sposob i ustroistvo dlya ohlazhdeniya kabelya (Patent RF RU 2491671, 27.08.2013 Byul. N 24) (in Russian)
- V.G. Fastovsky, Yu V. Petrovsky, A.E. Rovinsky, Kriogennaya tekhnika (Energiya, M., 1974) (in Russian)
- V.M. Zakosarenko, O.A. Kleshnina, V.N. Tsikhon. V sb.: Trudy FIAN. Tom 121. Voprosy prikladnoy sverhprovodimosti, pod red. N.G. Basova (Nauka, M., 1980), s 109 (in Russian)
- K.R. Efferson. Adv. Cryogenic Eng., 15, 124 (1995). DOI: 10.1007/978-1-4757-0513-3_18
- J.X. Jin, H.K. Liu, C. Grantham, S.X. Dou. In: Advances in Cryogenic Engineering. A Cryogenic Engineering Conference Publication, ed. by P. Kittel (Springer, Boston, MA, 1996), v. 41. DOI: 10.1007/978-1-4613-0373-2_228
- K. Kajikawa, K. Tomachi, N. Maema, M. Matsuo, S. Sato, K. Funaki, H. Kumakura, K. Tanaka, M. Okada, K. Nakamichi. J. Phys.: Conf. Ser., 97, 012140 (2008). DOI: 10.1088/1742-6596/97/1/012140
- K. Tomachi, K. Kajikawa, M. Matsuo, S. Sato, K. Tanaka, K. Funaki, H. Kumakura, M. Okada, K. Nakamichi, Yu. Kihara, T. Kamiya, I. Aoki. J. Cryogenics and Superconductivity Society Jpn., 44 (8), 366 (2009). DOI: 10.2221/jcsj.44.366
- K. Matsumoto, M. Sobue, K. Asamoto, Y. Nishimura, S. Abe, T. Numazawa. Cryogenics, 51 (2), 114 (2011). DOI: 10.1016/j.cryogenics.2010.11.005
- K. Kajikawa, T. Inoue, K. Watanabe, M. Kanazawa, Yu. Yamada, H. Kobayashi, H. Taguchi, I. Aoki. Phys. Proced., 36, 1396 (2012). DOI: 10.1016/j.phpro.2012.06.311
- M.A. Kolosov, V.Yu. Yemelyanov, E.S. Navasardyan. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 6, 116 (2014) (in Russian)
- K. Kajikawa, T. Inoue. K. Watanabe. Yu. Yamada, I. Aoki. AIP Conf. Proc., 1573, 905 (2014). DOI: 10.1063/1.4860800
- R. Karunanithi, S. Jacob, D.S. Nadig, M.V.N. Prasad, A.S. Gour, M. Gowthaman, P. Deekshith, V. Shrivastava. AIP Conf. Proc., 1573, 913 (2014). DOI: 10.1063/1.4860801
- R. Karunanithi, S. Jacob, D.S. Nadig, M.V.N. Prasad, A.S. Gour, S. Pankaj, M. Gowthaman, H. Sudharshan. Phys. Proced., 67, 1169 (2015). DOI: 10.1016/j.phpro.2015.06.182
- K. Maekawa, M. Takeda, Yu. Matsuno, S. Fujikawa, T. Kuroda, H. Kumakura. Phys. Proced., 67, 1164 (2015). DOI: 10.1016/j.phpro.2015.06.181
- K. Maekawa, M. Takeda, T. Hamaura, K. Suzuki, Yu. Matsuno, S. Fujikawa, H. Kumakura. IEEE Trans. Appl. Supercond., 27 (4), 9000304 (2017). DOI: 10.1109/TASC.2016.2642048
- A.S. Gour, P. Sagar, R. Karunanithi. Cryogenics, 84, 76 (2017). DOI: 10.1016/j.cryogenics.2017.04.007
- K.R. Kunniyoor, T. Richter, P. Ghosh. R. Lietzow, S. Schlachter, H. Neumann. IEEE Trans. Appl. Supercond., 28 (2), 9000810 (2018). DOI: 10.1109/TASC.2018.2799144
- J.M. Mun, J.H. Lee, S.C. Lee, R.D. Sim, S.H. Kim. Progress in Superconductivity and Cryogenics, 23 (4), 56 (2021). DOI: 10.9714/psac.2021.23.4.056
- X. Chi, X. Wang, X. Ke. Micromachines, 13 (4), 633 (2022). DOI: 10.3390/mi13040633
- A.V. Gurevich, R.G. Mints, A.L. Rakhmanov. The Physics of Composite Superconductors (Begell house inc., NY., 1997)
- V.A. Malginov, L.S. Fleishman, D.A. Gorbunova. Supercond. Sci. Technol., 33 (4), 045008 (2020). DOI: 10.1088/1361-6668/ab7470
- M.N. Wilson. Superconducting magnets (Clarendon Press, Oxford, 1983)
- A. Ivanov-Smolensky. Electrical Machines (Mir Publishers, Moscow, 1982), v. 1
- V.A. Malginov, L.S. Fleishman. Tech. Phys. Lett., 51 (4), 81 (2025). DOI: 10.61011/TPL.2025.04.61008.20141
- A. Goyal (editor). Second-Generation HTS Conductors (Kluwer Academic Publishers, Norwell, 2005)
- S. Samoilenkov, A. Molodyk, S. Lee, V. Petrykin, V. Kalitka, I. Martynova, A. Makarevich, A. Markelov, M. Moyzykh, A. Blednov. Supercond. Sci. Technol., 29 (2), 024001 (2016). DOI: 10.1088/0953-2048/29/2/024001
- W.J. Carr Jr. AC Loss and Macroscopic Theory of Superconductors (Taylor \& Francis, L., 2001)
- W. Frost. Heat Transfer at Low Temperatures (Springer Science, NY., 1975)
- V.A. Grigoriev, Yu.M. Pavlov, E.V. Ametistov. Kipenie kriogennykh zhidkostei (Energiya, M., 1977) (in Russian)
- S.S. Fetisov, V.S. Vysotsky, V.V. Zubco. IEEE Trans. Appl. Supercond., 21 (3), 1323 (2011). DOI: 10.1109/TASC.2010.2093094
- V.A. Malginov, A.V. Malginov, L.S. Fleishman. Tech. Phys. Lett., 45 (4), 331 (2019). DOI: 10.1134/S1063785019040096
- E.P. Volkov, E.A. Dzhafarov, L.S. Fleishman, V.S. Vysotsky, V.V. Sukonkin. Therm. Eng., 63 (13), 909 (2016). DOI: 10.1134/S0040601516130085
- S.V. Pokrovsky, A.Yu. Malyavina, R.G. Batulin, I.A. Rudnev. Kabeli i provoda 6, 14 (2023) (in Russian). DOI: 10.52350/2072215X_2023_6_14
- M.P. Malkov (red.). Spravochnik po fiziko-tekhnicheskim osnovam kriogeniki (Energoatomizdat, M., 1985) (in Russian)
- A.V. Malginov, A.Yu. Kuntsevich, V.A. Malginov, L.S. Fleishman. J. Exp. Theor. Phys., 117 (6), 1078 (2013). DOI: 10.1134/S106377611314015X
- Bulk Liquid Oxygen, Nitrogen, and Argon Storage Systems at Production Sites (European Industrial Gases Association AISBL, Brussels, Doc 127/23)
- Y. Yue, G. Chen, J. Long, L. Ren, K. Zhou, X. Li, Y. Xu, Y. Tang. Superconductivity, 4, 100028 (2022). DOI: 10.1016/j.supcon.2022.100028
- Yu. Larin, Yu. Smirnova. Pervaya milya, 1, 16 (2011). (in Russian)
- X. Li, C. Qian, R. Shen, H. Xiao, S. Ye. Opt. Express, 28 (6), 8233 (2020). DOI: 10.1364/OE.384994
- S.S. Fetisov, D.V. Sotnikov, S.Yu. Zanegin, N.V. Bykovsky, I.P. Radchenko, V.V. Zubko, V.S. Vysotsky. Phys. Proced., 67, 931 (2015). DOI: 10.1016/j.phpro.2015.06.157
- V.A. Malginov, L.S. Fleishman. Tech. Phys. Lett., 49 (6), 50 (2023). DOI: 10.61011/TPL.2023.06.56380.19579
- S. Veselova, M. Osipov, A. Starikovskii, I. Anishenko, S. Pokrovskii, D. Abin, I. Rudnev. J. Phys.: Conf. Ser., 1975, 012015 (2021). DOI: 10.1088/1742-6596/1975/1/012015
- P.L. Kalantarov, L.A. Tseytlin. Raschet induktivnostey: spravochnaya kniga (Energoatomizdat, L., 1986) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.