Phase transitions in superconductors with current under non-uniform heat removal conditions
Malginov V. A. 1, Fleishman L. S. 2
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2 Sergo Ordzhonikidze Russian State University for Geological Prospecting, Moscow, Russia
Email: malginovva@lebedev.ru

PDF
A study was made of phase transitions to normal state in high-temperature superconducting wires with current due to gaseous nitrogen occurrence around some part of the wire. The simultaneous presence of liquid and gaseous refrigerant along the wire length means that heat removal non-uniformity from its surface takes place that results in normal zone formation in the wire with current in the site with reduced heat removal. As a result, a jump-like change in the current and voltage occurs that may be used for signal generation by a superconducting sensor in alarm level indicator and/or gaseous inclusion indicator in liquid nitrogen. The sensor's ability to work is based upon the wire normal state stability maintenance after its operation and upon the reliability of the transient signal registration from the low resistance normal region. These was realized by means of AC current measurements using a transformer-based power supply. The results obtained for the first time are presented of physical modelling of the transients in the superconducting sensors depending on a stabilizing layer presence in the wire, the current supply method (cooled/non-cooled leads), the wire structure (single/bifilar). The importance of the obtained results for applications is confirmed by the recommendations developed on their basis concerning the superconducting sensor application in the alarm indicators for the two types of nitrogen cryostats: bulk type (for winding refrigeration) or long type (cryostat shell for superconducting cable). Keywords: high-temperature superconductor, phase transition, heat balance, normal zone, superconducting gaseous phase sensor.
  1. E.P. Volkov, L.S. Fleishman, V.S. Vysotsky, A.A. Nosov, V.V. Kostyuk, V.P. Firsov, S.F. Osetrov, A.N. Kiselev. V sb.: Innovatsionnye tekhnicheskie resheniya v programme NIOKR PAO "FSK EES", pod.red. A.E. Murova (AO "NTC FSK EES", M., 2016), s. 32 (in Russian)
  2. V.V. Zubko, S.Yu. Zanegin, S.S. Fetisov, V.S. Vysotsky, A.A. Nosov, E.S. Otabe, T. Akasaka. Sverkhprovodimost': fundamental'nye i prikladnye issledovaniya 1, 1 (53) (in Russian). DOI: 10.62539/2949-5644-2024-0-1-53-62
  3. T. Masuda, M. Watanabe, T. Mimura, M. Tanazawa, H. Yamaguchi. J. Phys.: Conf. Ser., 1559, 012083 (2020). DOI: 10.1088/1742-6596/1559/1/012083
  4. V.R. Romanovskii. Tech. Phys., 60 (1), 86 (2015). DOI: 10.1134/S106378421501020X
  5. V.A. Malginov, A.V. Malginov, L.S. Fleishman, A.S. Rakitin. Tech. Phys., 62 (10), 1516 (2017). DOI: 10.1134/S1063784217100176
  6. D.A. Grigor'ev, O.Yu. Gusev, Yu.P. Gusev, N.O. Posokhov. Therm. Eng., 70 (8), 624 (2023). DOI: 10.1134/S0040601523080037
  7. V.A. Malginov, A.V. Malginov, L.S. Fleishman. Tech. Phys., 64 (12), 1759 (2019). DOI: 10.1134/S106378421912017X
  8. V.A. Malginov, L.S. Fleishman. Tech. Phys. Lett., 50 (4), 71 (2024). DOI: 10.61011/PJTF.2024.08.57518.19785
  9. V.S. Vysotsky, S.S. Fetisov, A.A. Nosov. Sposob i ustroistvo dlya ohlazhdeniya kabelya (Patent RF RU 2491671, 27.08.2013 Byul. N 24) (in Russian)
  10. V.G. Fastovsky, Yu V. Petrovsky, A.E. Rovinsky, Kriogennaya tekhnika (Energiya, M., 1974) (in Russian)
  11. V.M. Zakosarenko, O.A. Kleshnina, V.N. Tsikhon. V sb.: Trudy FIAN. Tom 121. Voprosy prikladnoy sverhprovodimosti, pod red. N.G. Basova (Nauka, M., 1980), s 109 (in Russian)
  12. K.R. Efferson. Adv. Cryogenic Eng., 15, 124 (1995). DOI: 10.1007/978-1-4757-0513-3_18
  13. J.X. Jin, H.K. Liu, C. Grantham, S.X. Dou. In: Advances in Cryogenic Engineering. A Cryogenic Engineering Conference Publication, ed. by P. Kittel (Springer, Boston, MA, 1996), v. 41. DOI: 10.1007/978-1-4613-0373-2_228
  14. K. Kajikawa, K. Tomachi, N. Maema, M. Matsuo, S. Sato, K. Funaki, H. Kumakura, K. Tanaka, M. Okada, K. Nakamichi. J. Phys.: Conf. Ser., 97, 012140 (2008). DOI: 10.1088/1742-6596/97/1/012140
  15. K. Tomachi, K. Kajikawa, M. Matsuo, S. Sato, K. Tanaka, K. Funaki, H. Kumakura, M. Okada, K. Nakamichi, Yu. Kihara, T. Kamiya, I. Aoki. J. Cryogenics and Superconductivity Society Jpn., 44 (8), 366 (2009). DOI: 10.2221/jcsj.44.366
  16. K. Matsumoto, M. Sobue, K. Asamoto, Y. Nishimura, S. Abe, T. Numazawa. Cryogenics, 51 (2), 114 (2011). DOI: 10.1016/j.cryogenics.2010.11.005
  17. K. Kajikawa, T. Inoue, K. Watanabe, M. Kanazawa, Yu. Yamada, H. Kobayashi, H. Taguchi, I. Aoki. Phys. Proced., 36, 1396 (2012). DOI: 10.1016/j.phpro.2012.06.311
  18. M.A. Kolosov, V.Yu. Yemelyanov, E.S. Navasardyan. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 6, 116 (2014) (in Russian)
  19. K. Kajikawa, T. Inoue. K. Watanabe. Yu. Yamada, I. Aoki. AIP Conf. Proc., 1573, 905 (2014). DOI: 10.1063/1.4860800
  20. R. Karunanithi, S. Jacob, D.S. Nadig, M.V.N. Prasad, A.S. Gour, M. Gowthaman, P. Deekshith, V. Shrivastava. AIP Conf. Proc., 1573, 913 (2014). DOI: 10.1063/1.4860801
  21. R. Karunanithi, S. Jacob, D.S. Nadig, M.V.N. Prasad, A.S. Gour, S. Pankaj, M. Gowthaman, H. Sudharshan. Phys. Proced., 67, 1169 (2015). DOI: 10.1016/j.phpro.2015.06.182
  22. K. Maekawa, M. Takeda, Yu. Matsuno, S. Fujikawa, T. Kuroda, H. Kumakura. Phys. Proced., 67, 1164 (2015). DOI: 10.1016/j.phpro.2015.06.181
  23. K. Maekawa, M. Takeda, T. Hamaura, K. Suzuki, Yu. Matsuno, S. Fujikawa, H. Kumakura. IEEE Trans. Appl. Supercond., 27 (4), 9000304 (2017). DOI: 10.1109/TASC.2016.2642048
  24. A.S. Gour, P. Sagar, R. Karunanithi. Cryogenics, 84, 76 (2017). DOI: 10.1016/j.cryogenics.2017.04.007
  25. K.R. Kunniyoor, T. Richter, P. Ghosh. R. Lietzow, S. Schlachter, H. Neumann. IEEE Trans. Appl. Supercond., 28 (2), 9000810 (2018). DOI: 10.1109/TASC.2018.2799144
  26. J.M. Mun, J.H. Lee, S.C. Lee, R.D. Sim, S.H. Kim. Progress in Superconductivity and Cryogenics, 23 (4), 56 (2021). DOI: 10.9714/psac.2021.23.4.056
  27. X. Chi, X. Wang, X. Ke. Micromachines, 13 (4), 633 (2022). DOI: 10.3390/mi13040633
  28. A.V. Gurevich, R.G. Mints, A.L. Rakhmanov. The Physics of Composite Superconductors (Begell house inc., NY., 1997)
  29. V.A. Malginov, L.S. Fleishman, D.A. Gorbunova. Supercond. Sci. Technol., 33 (4), 045008 (2020). DOI: 10.1088/1361-6668/ab7470
  30. M.N. Wilson. Superconducting magnets (Clarendon Press, Oxford, 1983)
  31. A. Ivanov-Smolensky. Electrical Machines (Mir Publishers, Moscow, 1982), v. 1
  32. V.A. Malginov, L.S. Fleishman. Tech. Phys. Lett., 51 (4), 81 (2025). DOI: 10.61011/TPL.2025.04.61008.20141
  33. A. Goyal (editor). Second-Generation HTS Conductors (Kluwer Academic Publishers, Norwell, 2005)
  34. S. Samoilenkov, A. Molodyk, S. Lee, V. Petrykin, V. Kalitka, I. Martynova, A. Makarevich, A. Markelov, M. Moyzykh, A. Blednov. Supercond. Sci. Technol., 29 (2), 024001 (2016). DOI: 10.1088/0953-2048/29/2/024001
  35. W.J. Carr Jr. AC Loss and Macroscopic Theory of Superconductors (Taylor \& Francis, L., 2001)
  36. W. Frost. Heat Transfer at Low Temperatures (Springer Science, NY., 1975)
  37. V.A. Grigoriev, Yu.M. Pavlov, E.V. Ametistov. Kipenie kriogennykh zhidkostei (Energiya, M., 1977) (in Russian)
  38. S.S. Fetisov, V.S. Vysotsky, V.V. Zubco. IEEE Trans. Appl. Supercond., 21 (3), 1323 (2011). DOI: 10.1109/TASC.2010.2093094
  39. V.A. Malginov, A.V. Malginov, L.S. Fleishman. Tech. Phys. Lett., 45 (4), 331 (2019). DOI: 10.1134/S1063785019040096
  40. E.P. Volkov, E.A. Dzhafarov, L.S. Fleishman, V.S. Vysotsky, V.V. Sukonkin. Therm. Eng., 63 (13), 909 (2016). DOI: 10.1134/S0040601516130085
  41. S.V. Pokrovsky, A.Yu. Malyavina, R.G. Batulin, I.A. Rudnev. Kabeli i provoda 6, 14 (2023) (in Russian). DOI: 10.52350/2072215X_2023_6_14
  42. M.P. Malkov (red.). Spravochnik po fiziko-tekhnicheskim osnovam kriogeniki (Energoatomizdat, M., 1985) (in Russian)
  43. A.V. Malginov, A.Yu. Kuntsevich, V.A. Malginov, L.S. Fleishman. J. Exp. Theor. Phys., 117 (6), 1078 (2013). DOI: 10.1134/S106377611314015X
  44. Bulk Liquid Oxygen, Nitrogen, and Argon Storage Systems at Production Sites (European Industrial Gases Association AISBL, Brussels, Doc 127/23)
  45. Y. Yue, G. Chen, J. Long, L. Ren, K. Zhou, X. Li, Y. Xu, Y. Tang. Superconductivity, 4, 100028 (2022). DOI: 10.1016/j.supcon.2022.100028
  46. Yu. Larin, Yu. Smirnova. Pervaya milya, 1, 16 (2011). (in Russian)
  47. X. Li, C. Qian, R. Shen, H. Xiao, S. Ye. Opt. Express, 28 (6), 8233 (2020). DOI: 10.1364/OE.384994
  48. S.S. Fetisov, D.V. Sotnikov, S.Yu. Zanegin, N.V. Bykovsky, I.P. Radchenko, V.V. Zubko, V.S. Vysotsky. Phys. Proced., 67, 931 (2015). DOI: 10.1016/j.phpro.2015.06.157
  49. V.A. Malginov, L.S. Fleishman. Tech. Phys. Lett., 49 (6), 50 (2023). DOI: 10.61011/TPL.2023.06.56380.19579
  50. S. Veselova, M. Osipov, A. Starikovskii, I. Anishenko, S. Pokrovskii, D. Abin, I. Rudnev. J. Phys.: Conf. Ser., 1975, 012015 (2021). DOI: 10.1088/1742-6596/1975/1/012015
  51. P.L. Kalantarov, L.A. Tseytlin. Raschet induktivnostey: spravochnaya kniga (Energoatomizdat, L., 1986) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru