Effect of Vacuum Heat Treatment of La1-xSrxFeO3-δ on Magnetic Hysteresis
Dmitriev A. I. 1, Dmitrieva M. S.1
1Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
Email: alex-dmitriev2005@yandex.ru

PDF
The dependences of magnetization on the magnetic field strength M(H) in the form of hysteresis loops in a wide temperature range of polycrystalline samples of substituted lanthanum-strontium ferrite La0.67Sr0.33FeO3-δ before and after vacuum heat treatment were studied in detail. It was found that the microscopic mechanism responsible for the formation of magnetic hysteresis in the original samples is the pinning of domain walls on extended defects, the dimensions of which are smaller than the thickness of the domain wall. In annealed samples, this is the fixation of domain walls on extended defects, the dimensions of which are larger than the thickness of the domain wall. Keywords: substituted lanthanum-strontium ferrites, magnetic hysteresis.
  1. U.F. Vogt, J. Sfeir, J. Richter, C. Soltmann, P. Holtappels. Pure Appl. Chem., 80 (11), 2543 (2008). DOI: 10.1351/pac200880112543
  2. C.O. Augustin, R. Kalai, R. Nagaraj, L.J. Berchmans. Mater. Chem. Phys., 89 (2-3), 406 (2005). DOI: 10.1016/j.matchemphys.2004.09.028
  3. M. S gaard, P.V. Hendriksen, M. Mogensen. J. Solid State Chem., 180 (4), 1489 (2007). DOI: 10.1016/j.jssc.2007.02.012
  4. M.V. Patrakeev, J.A. Bahteeva, E.B. Mitberg, I.A. Leonidov, V.L. Kozhevnikov, K.R. Poeppelmeier. J. Solid State Chem., 172 (1), 219 (2003). DOI: 10.1016/S0022-4596(03)00040-9
  5. H. Liu, H. Fan, X. Xu, H. Lu, T. Zhang. Solid State Electron., 79, 87 (2013). DOI: 10.1016/j.sse.2012.07.004
  6. A. Wattiaux, J. C. Grenier, M. Pouchard, P. Hagenmuller. J. Electrochem. Soc., 134, 1718 (1987). DOI: 10.1149/1.2100742
  7. J. Li, X. Kou, Y. Qin, H. He. Phys. Stat. Sol., 191 (1), 255 (2002). DOI: 10.1002/1521-396x(200205)191:1<255::aid-pssa255>3.0.co;2-n
  8. A.H. Bobeck. Bell Syst. Tech. J., 46 (8), 1901 (1967). DOI: 10.1002/j.1538-7305.1967.tb03177.x
  9. A. Goldman. Modern Ferrite Technology (Springer, NY., 2006), DOI: 10.1007/978-0-387-29413-1
  10. D.W. Richerson, W.E. Lee. Modern Ceramic Engineering: Properties, Processes and Use in Design (CRC Press, Boca Raton, 2018), DOI: 10.1201/9780429488245
  11. I.N. Sora, F. Fontana, R. Passalacqua, C. Ampelli, S. Perathoner, G. Centi, F. Parrino, L. Palmisano. Electrochim. Acta, 109 (30), 710 (2013). DOI: 10.1016/j.electacta.2013.07.132
  12. J.R. Hayes, A.P. Grosvenor. J. Phys.: Condens. Matter, 23 (46), 465502 (2011). DOI: 10.1088/0953-8984/23/46/465502
  13. M. Popa, J.M.C. Moreno. J. Alloys Compd., 509 (10), 4108 (2011). DOI: 10.1016/j.jallcom.2010.12.162
  14. H. Wu, Z. Xia, X. Zhang, S. Huang, Me. Wei, Fe. Yang, Y. Song, G. Xiao, Z. Ouyang, Z. Wang. Ceram. Int., 44 (1), 146 (2018). DOI: 10.1016/j.ceramint.2017.09.150
  15. L. Huang, L. Cheng, S. Pan, Y. He, C. Tian, J. Yu, H. Zhou. Ceram. Int., 46 (17), 27352 (2018). DOI: 10.1016/j.ceramint.2020.07.220
  16. F. Yang, X.X. Yang, Q. Lin, R.J. Wang, H. Yang, Y. He. Mater. Sci., 25 (3), 231 (2019). DOI: 10.5755/j01.ms.25.3.19455
  17. R.B. da Silva, J.M. Soares, J.A.P. da Costa, J.H. de Araujo, A.R. Rodrigues, F.L.A. Machado. J. Magn. Magn. Mater., 466 (15), 306 (2018). DOI: 10.1016/j.jmmm.2018.07.040
  18. F. Gao, P.L. Li, Y.Y. Weng, S. Dong, L.F. Wang, L.Y. Lv, K.F. Wang, J.-M. Liu, Z.F. Ren. Appl. Phys. Lett., 91 (7), 072504 (2007). DOI: 10.1063/1.2768895
  19. V. Sedykh, O. Rybchenko, V. Rusakov, S. Zaitsev, O. Barkalov, E. Postnova, T. Gubaidulina, D. Pchelina, V. Kulakov. J. Phys. Chem. Solids, 171, 111001 (2022). DOI: 10.1016/j.jpcs.2022.111001
  20. V.D. Sedykh, V.S. Rusakov, T.V. Gubaidulina. Phys. Solid State, 65 (4), 613 (2023). DOI: 10.21883/PSS.2023.04.56003.18
  21. A. Enders, D. Repetto, D. Peterka, K. Kern. Phys. Rev. B, 72 (5), 054446 (2005). DOI: 10.1103/PhysRevB.72.054446
  22. H. Oesterreicher, F.T. Parker, M. Misroch. Phys. Rev. B, 18 (1), 480 (1978). DOI: 10.1103/PhysRevB.18.480
  23. K.-D. Durst, H. Kronmuller, F.T. Parker, H. Oesterreicher. Phys. Status Solidi A, 95 (1), 213 (1986). DOI: 10.1002/pssa.2210950127
  24. R. Kutterer, H.-R. Hilzinger, H. Kronmuller. J. Magn. Magn. Mater., 4 (1-4), 1 (1977). DOI: 10.1016/0304-8853(77)90004-X
  25. D. Pajic, K. Zadro, R. Ristic, I. v Zivkovic, v Z. Skoko, E. Babic. J. Phys.: Condens. Matter, 19 (29), 296207 (2007). DOI: 10.1088/0953-8984/19/29/296207
  26. T.E. Torres. E. Lima, A. Mayoral. A. Ibarra. C. Marquina. M.R. Ibarra. G.F. Goya. J. Appl. Phys., 118 (18), 183902 (2015). DOI: 10.1063/1.4935146
  27. A. Moskvin. Magnetochem., 7 (8), 111 (2021). DOI: 10.3390/magnetochemistry7080111
  28. J.B. Yang, W.B. Yelon, W.J. James, Z. Chu, M. Kornecki, Y.X. Xie, X.D. Zhou, H.U. Anderson, A.G. Joshi, S.K. Malik. Phys. Rev. B, 66 (18), 184415 (2002). DOI: 10.1103/PhysRevB.66.184415
  29. E.A. Turov. Sov. Phys. JETP, 36 (9), 890 (1959). http://www.jetp.ras.ru/cgi-bin/dn/e_009_04_0890.pdf
  30. S. Cao, X. Zhang, T.R. Paudel, K. Sinha, X. Wang, X. Jiang, W. Wang, S. Brutsche, J. Wang, P.J. Ryan, J.-W. Kim, X. Cheng, E.Y. Tsymbal, P.A. Dowben, X. Xu. J. Condens. Matter Phys., 28 (15), 156001 (2016). DOI: 10.1088/0953-8984/28/15/156001
  31. G.M. Cole, B.B. Garrett. Inorg. Chem., 9 (8), 1898 (1970). DOI: 10.1021/ic50090a020
  32. R. Al-Mobarak, K.D. Warren. Chem. Phys. Lett., 21 (3), 513 (1973). DOI: 10.1016/0009-2614(73)80296-9
  33. S. Krupiv cka. Physik der Ferrite und der verwandten magnetischen Oxide (Springer, Wiesbaden, 1973), DOI: 10.1007/978-3-322-83522-2

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru