Effect of Vacuum Heat Treatment of La1-xSrxFeO3-δ on Magnetic Hysteresis
Dmitriev A. I. 1, Dmitrieva M. S.1
1Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
Email: alex-dmitriev2005@yandex.ru
The dependences of magnetization on the magnetic field strength M(H) in the form of hysteresis loops in a wide temperature range of polycrystalline samples of substituted lanthanum-strontium ferrite La0.67Sr0.33FeO3-δ before and after vacuum heat treatment were studied in detail. It was found that the microscopic mechanism responsible for the formation of magnetic hysteresis in the original samples is the pinning of domain walls on extended defects, the dimensions of which are smaller than the thickness of the domain wall. In annealed samples, this is the fixation of domain walls on extended defects, the dimensions of which are larger than the thickness of the domain wall. Keywords: substituted lanthanum-strontium ferrites, magnetic hysteresis.
- U.F. Vogt, J. Sfeir, J. Richter, C. Soltmann, P. Holtappels. Pure Appl. Chem., 80 (11), 2543 (2008). DOI: 10.1351/pac200880112543
- C.O. Augustin, R. Kalai, R. Nagaraj, L.J. Berchmans. Mater. Chem. Phys., 89 (2-3), 406 (2005). DOI: 10.1016/j.matchemphys.2004.09.028
- M. S gaard, P.V. Hendriksen, M. Mogensen. J. Solid State Chem., 180 (4), 1489 (2007). DOI: 10.1016/j.jssc.2007.02.012
- M.V. Patrakeev, J.A. Bahteeva, E.B. Mitberg, I.A. Leonidov, V.L. Kozhevnikov, K.R. Poeppelmeier. J. Solid State Chem., 172 (1), 219 (2003). DOI: 10.1016/S0022-4596(03)00040-9
- H. Liu, H. Fan, X. Xu, H. Lu, T. Zhang. Solid State Electron., 79, 87 (2013). DOI: 10.1016/j.sse.2012.07.004
- A. Wattiaux, J. C. Grenier, M. Pouchard, P. Hagenmuller. J. Electrochem. Soc., 134, 1718 (1987). DOI: 10.1149/1.2100742
- J. Li, X. Kou, Y. Qin, H. He. Phys. Stat. Sol., 191 (1), 255 (2002). DOI: 10.1002/1521-396x(200205)191:1<255::aid-pssa255>3.0.co;2-n
- A.H. Bobeck. Bell Syst. Tech. J., 46 (8), 1901 (1967). DOI: 10.1002/j.1538-7305.1967.tb03177.x
- A. Goldman. Modern Ferrite Technology (Springer, NY., 2006), DOI: 10.1007/978-0-387-29413-1
- D.W. Richerson, W.E. Lee. Modern Ceramic Engineering: Properties, Processes and Use in Design (CRC Press, Boca Raton, 2018), DOI: 10.1201/9780429488245
- I.N. Sora, F. Fontana, R. Passalacqua, C. Ampelli, S. Perathoner, G. Centi, F. Parrino, L. Palmisano. Electrochim. Acta, 109 (30), 710 (2013). DOI: 10.1016/j.electacta.2013.07.132
- J.R. Hayes, A.P. Grosvenor. J. Phys.: Condens. Matter, 23 (46), 465502 (2011). DOI: 10.1088/0953-8984/23/46/465502
- M. Popa, J.M.C. Moreno. J. Alloys Compd., 509 (10), 4108 (2011). DOI: 10.1016/j.jallcom.2010.12.162
- H. Wu, Z. Xia, X. Zhang, S. Huang, Me. Wei, Fe. Yang, Y. Song, G. Xiao, Z. Ouyang, Z. Wang. Ceram. Int., 44 (1), 146 (2018). DOI: 10.1016/j.ceramint.2017.09.150
- L. Huang, L. Cheng, S. Pan, Y. He, C. Tian, J. Yu, H. Zhou. Ceram. Int., 46 (17), 27352 (2018). DOI: 10.1016/j.ceramint.2020.07.220
- F. Yang, X.X. Yang, Q. Lin, R.J. Wang, H. Yang, Y. He. Mater. Sci., 25 (3), 231 (2019). DOI: 10.5755/j01.ms.25.3.19455
- R.B. da Silva, J.M. Soares, J.A.P. da Costa, J.H. de Araujo, A.R. Rodrigues, F.L.A. Machado. J. Magn. Magn. Mater., 466 (15), 306 (2018). DOI: 10.1016/j.jmmm.2018.07.040
- F. Gao, P.L. Li, Y.Y. Weng, S. Dong, L.F. Wang, L.Y. Lv, K.F. Wang, J.-M. Liu, Z.F. Ren. Appl. Phys. Lett., 91 (7), 072504 (2007). DOI: 10.1063/1.2768895
- V. Sedykh, O. Rybchenko, V. Rusakov, S. Zaitsev, O. Barkalov, E. Postnova, T. Gubaidulina, D. Pchelina, V. Kulakov. J. Phys. Chem. Solids, 171, 111001 (2022). DOI: 10.1016/j.jpcs.2022.111001
- V.D. Sedykh, V.S. Rusakov, T.V. Gubaidulina. Phys. Solid State, 65 (4), 613 (2023). DOI: 10.21883/PSS.2023.04.56003.18
- A. Enders, D. Repetto, D. Peterka, K. Kern. Phys. Rev. B, 72 (5), 054446 (2005). DOI: 10.1103/PhysRevB.72.054446
- H. Oesterreicher, F.T. Parker, M. Misroch. Phys. Rev. B, 18 (1), 480 (1978). DOI: 10.1103/PhysRevB.18.480
- K.-D. Durst, H. Kronmuller, F.T. Parker, H. Oesterreicher. Phys. Status Solidi A, 95 (1), 213 (1986). DOI: 10.1002/pssa.2210950127
- R. Kutterer, H.-R. Hilzinger, H. Kronmuller. J. Magn. Magn. Mater., 4 (1-4), 1 (1977). DOI: 10.1016/0304-8853(77)90004-X
- D. Pajic, K. Zadro, R. Ristic, I. v Zivkovic, v Z. Skoko, E. Babic. J. Phys.: Condens. Matter, 19 (29), 296207 (2007). DOI: 10.1088/0953-8984/19/29/296207
- T.E. Torres. E. Lima, A. Mayoral. A. Ibarra. C. Marquina. M.R. Ibarra. G.F. Goya. J. Appl. Phys., 118 (18), 183902 (2015). DOI: 10.1063/1.4935146
- A. Moskvin. Magnetochem., 7 (8), 111 (2021). DOI: 10.3390/magnetochemistry7080111
- J.B. Yang, W.B. Yelon, W.J. James, Z. Chu, M. Kornecki, Y.X. Xie, X.D. Zhou, H.U. Anderson, A.G. Joshi, S.K. Malik. Phys. Rev. B, 66 (18), 184415 (2002). DOI: 10.1103/PhysRevB.66.184415
- E.A. Turov. Sov. Phys. JETP, 36 (9), 890 (1959). http://www.jetp.ras.ru/cgi-bin/dn/e_009_04_0890.pdf
- S. Cao, X. Zhang, T.R. Paudel, K. Sinha, X. Wang, X. Jiang, W. Wang, S. Brutsche, J. Wang, P.J. Ryan, J.-W. Kim, X. Cheng, E.Y. Tsymbal, P.A. Dowben, X. Xu. J. Condens. Matter Phys., 28 (15), 156001 (2016). DOI: 10.1088/0953-8984/28/15/156001
- G.M. Cole, B.B. Garrett. Inorg. Chem., 9 (8), 1898 (1970). DOI: 10.1021/ic50090a020
- R. Al-Mobarak, K.D. Warren. Chem. Phys. Lett., 21 (3), 513 (1973). DOI: 10.1016/0009-2614(73)80296-9
- S. Krupiv cka. Physik der Ferrite und der verwandten magnetischen Oxide (Springer, Wiesbaden, 1973), DOI: 10.1007/978-3-322-83522-2
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.