Tunable quantum cascade laser for methane concentration measurement
Mikhailov D. A.1, Dudelev V. V.1, Chistyakov D. V.1, Cherotchenko E. D.1, Vrubel I. I.1, Mylnikov V. Yu.1, Losev S. N.1, Deryagin N. G.1, Abdulrazak S. Kh.1, Babichev A. V.1, Lyutetskiy A. V.1, Slipchenko S. O.1, Pikhtin N. A.1, Gladyshev A. G.2, Podgaetskiy K. A.3, Andreev A. Yu.3, Yarotskaya I. V.3, Ladugin M. A.3, Marmalyuk A. A.3, Papylev D. S.4, Novikov I. I.2,4, Kognovitskaya E. A.1,5, Kuchinskii V. I.1, Karachinsky L. Ya.2,4, Egorov A. Yu.2, Sokolovskii G. S.1
1Ioffe Institute, St. Petersburg, Russia
2Connector Optics LLC, St. Petersburg, Russia
3“Polyus” Research Institute of M.F. Stelmakh Joint Stock Company, Moscow, Russia
4ITMO University, St. Petersburg, Russia
5D.I. Mendeleev Institute for Metrology, St. Petersburg, Russia
Email: dm@mail.ioffe.ru

PDF
We report spectral studies of methane using a quantum cascade laser (QCL) with an external resonator in the Littrow configuration operating in 7550-7750 nm range. We demonstrate this setup to allow detection of methane concentrations as low as 165 ppm, which is over 250-fold below the lower explosive limit of methane concentration in the atmosphere. We also discuss the potential for increasing the sensitivity of methane detection scheme. Keywords: quantum cascade laser, methane, gas analysis, infrared spectroscopy.
  1. J. Lelieveld, P.J. Crutzen, C. Bruhl, Chemosphere, 26 (1-4), 739 (1993). DOI: 10.1016/0045-6535(93)90458-h
  2. D. Beerling, R.A. Berner, F.T. Mackenzie, M.B. Harfoot, J.A. Pyle, Am. J. Sci., 309, 97 (2009). DOI: 10.2475/02.2009.01
  3. K. Knittel, A. Boetius, Ann. Rev. Microbiol., 63, 311 (2009). DOI: 10.1146/annurev.micro.61.080706.093130
  4. S. Kundu, J. Zanganeh, B. Moghtaderi, J. Loss Prev. Process Ind., 40, 507 (2016). DOI: 10.1016/j.jlp.2016.02.004
  5. K.K. Schwarm, C.L. Strand, V.A. Miller, R.M. Spearrin, Appl. Phys. B, 126 (1), 9 (2020). DOI: 10.1007/s00340-019-7358-x
  6. R.F. Kazarinov, R.A. Suris, Sov. Phys.-Semiconductors, 5 (4), 707 (1971)
  7. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science, 264 (5158), 553 (1994). DOI: 10.1126/science.264.5158.553
  8. G.L. Belenky, L. Shterengas, J.G. Kim, R. Martinelli, S. Suchalkin, M.V. Kisin, Proc. SPIE, 5732 (2005). DOI: 10.1117/12.584729
  9. I. Vurgaftman, R. Weih, M. Kamp, J.R. Meyer, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, J. Phys. D, 48, 123001 (2015). DOI: 10.1088/0022-3727/48/12/123001
  10. M. Ebrahimzadeh, Phil. Trans. Roy. Soc. A, 361, 2731 (2003). DOI: 10.1098/rsta.2003.1284
  11. V.V. Dudelev, E.D. Cherotchenko, I.I. Vrubel, D.A. Mikhailov, D.V. Chistyakov, V.Yu. Mylnikov, S.N. Losev, E.A. Kognovitskaya, A.V. Babichev, A.V. Lutetskiy, S.O. Slipchenko, N.A. Pikhtin, A.V. Abramov, A.G. Gladyshev,K.A. Podgaetskiy, A.Yu. Andreev, I.V. Yarotskaya, M.A. Ladugin, A.A. Marmalyuk, I.I. Novikov, V.I. Kuchinskii, L.Ya. Karachinsky, A.Yu. Egorov, G.S. Sokolovskii, Phys. Usp., 67 (1), 92 (2024). DOI: 10.3367/UFNe.2023.05.039543
  12. V.V. Dudelev, E.D. Cherotchenko, I.I. Vrubel, D.A. Mikhailov, D.V. Chistyakov, S.N. Losev, A.V. Babichev, A.V. Lyutetskii, S.O. Slipchenko, N.A. Pikhtin, A.G. Gladyshev, K.A. Podgaetskiy, A.Yu. Andreev, I.V. Yarotskaya, M.A. Ladugin, A.A. Marmalyuk, I.I. Novikov, D.S. Papylev, S.A. Chakhlov, V.I. Kuchinskii, L.Ya. Karachinsky, A.Yu. Egorov, G.S. Sokolovskii, Tech. Phys. Lett., 50 (11), 115 (2024). DOI: 10.61011/TPL.2024.11.59682.20116
  13. E. Cherotchenko, V. Dudelev, D. Mikhailov, G. Savchenko, D. Chistyakov, S. Losev, A. Babichev, A. Gladyshev, I. Novikov, A. Lutetskiy, D. Veselov, S. Slipchenko, D. Denisov, A. Andreev, I. Yarotskaya, K. Podgaetskiy, M. Ladugin, A. Marmalyuk, N. Pikhtin, L. Karachinsky, V. Kuchinskii, A. Egorov, G. Sokolovskii, Nanomaterials, 12, 3971 (2022). DOI: 10.3390/nano12223971
  14. V.V. Dudelev, D.A. Mikhailov, A.V. Babichev, G.M. Savchenko, S.N. Losev, E.A. Kognovitskaya, A.V. Lyutetskii, S.O. Slipchenko, N.A. Pikhtin, A.G. Gladyshev, D.V. Denisov, I.I. Novikov, L.Ya. Karachinsky, V.I. Kuchinskii, A.Yu. Egorov, G.S. Sokolovskii, Quantum Electron., 50 (11), 989 (2020). DOI: 10.1070/QEL17396
  15. H.I. Schiff, Proc. SPIE, 1433 (1991)
  16. F. Xie, C. Caneau, H.P. LeBlanc, N.J. Visovsky, S. Coleman, L.C. Hughes, IEEE J. Sel. Top. Quantum Electron., 18 (5), 1605 (2012). DOI: 10.1109/JSTQE.2012.2193876
  17. D.I. Kuritsyn, A.V. Antonov, S.V. Morozov, V.A. Anfertev, M.B. Chernyaeva, V.L. Vaks, V.V. Dudelev, D.A. Mikailov, D.V. Chistyakov, N.G. Deryagin, S.O. Slipchenko, A.V. Lyutetskii, A.G. Gladyshev, A.V. Babichev, L.Ya. Karachinsky, I.I. Novikov, N.A. Pikhtin, A.Yu. Egorov, G.S. Sokolovskii, V.I. Gavrilenko, Tech. Phys. Lett., 50 (3), 21 (2024). DOI: 10.61011/PJTF.2024.05.57180.19746
  18. A. Reyes-Reyes, Z. Hou, E. van Mastrigt, R.C. Horsten, J.C. de Jongste, M.W. Pijnenburg, N. Bhattacharya, Opt. Express, 22 (15), 18299 (2014). DOI: 10.1364/oe.22.018299
  19. GOST R 52136-2003
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru