Conversion of CO2 in microwave discharge in liquid ethanol
Batukaev T.S. 1, Bilera I.V. 1, Krashevskaya G.V. 1,2, Lebedev Yu.A. 1, Shumilov V.K.1
1Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
Email: batukaev@ips.ac.ru, bilera@ips.ac.ru, lebedev@ips.ac.ru

PDF
The results of the possibility of decomposing carbon dioxide and obtaining synthesis gas in a microwave discharge in an aqueous solution of ethanol with CO2 bubbling at atmospheric pressure are presented for the first time. The main products of the discharge are H2 and CO, the ratio of the main products with increasing power changes insignificantly. The rate of formation of products and the degree of decomposition of carbon dioxide are directly proportional to the incident power. The highest degree of decomposition of carbon dioxide is 43 %. Keywords: microwave discharge in liquid ethanol, CO2 decomposition, chromatography of discharge products, synthesis-gas production.
  1. A. Ikeda, Y.M. Hunge, K. Teshima, H. Uetsuka, C. Terashima, Energy Fuels, 38 (13), 11918 (2024). DOI: 10.1021/acs.energyfuels.4c01214
  2. R. Aerts, R. Snoeckx, A. Bogaerts, Plasma Process. Polym., 11 (10), 985 (2014). DOI: 10.1002/ppap.201400091
  3. S.C. Kim, M.S. Lim, Y.N. Chun, Plasma Chem. Plasma Process., 34, 125 (2014). DOI: 10.1007/s11090-013-9499-8
  4. V. Shapoval, E. Marotta, Plasma Process. Polym., 12 (8), 808 (2015). DOI: 10.1002/ppap.201400177
  5. D. Li, X. Li, M. Bai, X. Tao, S. Shang, X. Dai, Y. Yin, Int. J. Hydrog. Energy, 34 (1), 308 (2009). DOI: 10.1016/j.ijhydene.2008.10.053
  6. D. Czylkowski, B. Hrycak, R. Miotk, M. Jasinski, M. Dors, J. Mizeraczyk, Int. J. Hydrog. Energy, 40 (40), 14039 (2015). DOI: 10.1016/j.ijhydene.2015.06.101
  7. H. Zhang, X. Li, F. Zhu, K. Cen, C. Du, X. Tu, Chem. Eng. J., 310, 114 (2017). DOI: 10.1016/j.cej.2016.10.104
  8. R. Miotk, B. Hrycak, D. Czylkowski, M. Dors, M. Jasinski, J. Mizeraczyk, Plasma Sources Sci. Technol., 25 (3), 035022 (2016). DOI: 10.1088/0963-0252/25/3/035022
  9. T.S. Batukaev, I.V. Bilera, G.V. Krashevskaya, Yu.A. Lebedev, N.A. Nazarov, Plasma, 6 (1), 115 (2023). DOI: 10.3390/plasma6010010
  10. T.S. Batukaev, I.V. Bilera, G.V. Krashevskaya, Yu.A. Lebedev, I.L. Epstein, Plasma Process. Polym., 20 (6), e2300015 (2023). DOI: 10.1002/ppap.202300015
  11. X. Zhao, B. Sun, T. Zhu, X. Zhu, Z. Yan, Y. Xin, X. Sun, Renew. Energy, 156, 768 (2020). DOI: 10.1016/j.renene.2020.04.088
  12. T. Zhu, B. Sun, X. Zhu, L. Wang, Y. Xin, J. Liu, J. Anal. Appl. Pyrol., 156, 105111 (2021). DOI: 10.1016/j.jaap.2021.105111
  13. V.S. Arutyunov, A.V. Nikitin, V.I. Savchenko, I.V. Sedov, Bull. Russ. Acad. Sci. Chem., 513, Part 2, 361 (2023). DOI: 10.1134/S0012500823601018
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru