The influence of band structure anisotropy on the plasma oscillations propagation along a conductive nanolayer
Savenko O. V.
11Demidov State University, Yaroslavl, Russia
Email: savenko.oleg92@mail.ru
A theoretical model of surface plasma oscillations propagation in a conductive nanolayer is constructed taking into account the symmetrical charge distribution at the nanolayer boundaries. It is assumed that the conductor constant energy surface is an ellipsoid of revolution. The surface wave frequency is limited from above by the near IR frequency. The nanolayer thickness can be comparable to or smaller than the charge carrier de Broglie wavelength. Surface scattering of charge carriers is taken into account through the Soffer boundary conditions. Analytical expressions are obtained for the wave propagation coefficient, attenuation coefficient, and propagation length. We conducted the analysis of the surface wave characteristics dependences on the dimensionless parameters: the conductive layer thickness, the surface wave frequency, the chemical potential, the insulating layer permittivity, the "semiconductor-dielectric" interfaces roughness parameters, and the isoenergetic surface ellipticity parameter. Keywords: surface plasmon, conductive nanolayer, kinetic equation, propagation coefficient, propagation length.
- S.A. Maier. Plasmonika: teoriya i prilozheniya (R\&C Dynamics, M., Izhevsk, 2011) (in Russian)
- E. Kretschmann, T.L. Ferrell, C. Ashley. Phys. Rev. Lett., 42, 1312 (1979). DOI: 10.1103/PhysRevLett.42.1312
- G.A. Farias, A.A. Maradudin. Phys. Rev. B, 28 (10), 5675 (1983). DOI: 10.1103/PhysRevB.28.5675
- L.A. Moraga, R. Labbe. Phys. Rev. B, 41, 10221 (1990). DOI: 10.1103/PhysRevB.41.10221
- Zh. Yang, D. Gu, Y. Gao. Opt. Commun., 329, 180 (2014). DOI: 10.1016/j.optcom.2014.05.014
- N. Sharma, A. Joy, A.K. Mishra, R.K. Verma. Opt. Commun., 357, 120 (2015). DOI: 10.1016/j.optcom.2015.08.092
- Zh. Yang, Ch. Liu, Ya. Gao, J. Wang, W. Yang. Chinese Opt. Lett., 14 (4), 042401 (2016). DOI: 10.3788/COL201614.042401
- L. Saitta, G. Celano, C. Tosto, F. Arcadio, L. Zeni, C. Sergi, N. Cennamo, G. Cicala. Intern. J. Advanced Manufacturing Technology, 132, 5503 (2024). DOI: 10.1007/s00170-024-13649-x
- H.J. Zhang, Q. Yan, Y.Y. Li, T.R. Zhang, X.L. Zhang, Y.H. Wang, Y.F. Liu. Modern Phys. Lett. B, 37, 33 (2023). DOI: 10.2139/ssrn.4054450
- M.E. Borisova, S.N. Koikov. Fizika dielektrikov (Izd-vo Leningr. un-ta, L., 1979) (in Russian)
- K. Blum. Teoriya matritsy plotnosti i ee prilozheniya (Mir, M., 1983) (in Russian)
- I.A. Kuznetsova, O.V. Savenko, D.N. Romanov. Phys. Lett. A, 427, 127933 (2022). DOI: 10.1016/j.physleta.2022.127933
- M.I. D'yakonov, A.V. Khaetskii. JETP, 55 (5), 917 (1982)
- O.V. Savenko, I.A. Kuznetsova. Proc. SPIE, 12157, 121570W (2022). DOI: 10.1117/12.2622544
- S.B. Soffer. J. Appl. Phys., 38 (4), 1710 (1967). DOI: 10.1063/1.1709746
- A.B. Shmelev. Sov. Phys. Usp., 15, 173 (1972). DOI: 10.1070/PU1972v015n02ABEH004961
- I.A. Kuznetsova, O.V. Savenko. Semiconductors, 56 (8), 570 (2022). DOI: 10.21883/SC.2022.08.54116.33
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.