Effect of plasmonic nanoparticles on generation properties dye molecules
Kucherenko M. G. 1, Rusinov A. P. 1, Mushin F. Yu. 2, Chmereva T. M. 1
1Center of Laser and Information Biophysics, Orenburg State University, Orenburg, Russia
2Orenburg Presidential Cadet College, Orenburg, Russia
Email: clibph@yandex.ru, sano232@mail.ru, fedor.mushin@yandex.ru, chmereva@yandex.ru

PDF
The effect of plasmonic nanoparticles (NP) on the generation of radiation by organic dye molecules has been theoretically and experimentally investigated. To calculate the intensity of radiation generated by molecules in the presence of plasmonic NPS, a theoretical model is proposed that takes into account the change in the rates of spontaneous and stimulated radiation of a molecule, nonradiative relaxation of the molecule, and light absorption by a molecule near the NPS in the velocity equations of a three-level laser. The nonmonotonic dependence of the threshold of generation of an aqueous solution of rhodamine 6G on the concentration of NPS in the solution observed in the experiment is explained on the basis of the proposed model. Keywords: plasmonic nanoparticle, phosphor molecule, stimulated radiation, generation threshold.
  1. M. Bauch, K. Toma, M. Toma, Q. Zhang, J. Dostalek. Plasmonics, 9, 781 (2014). DOI: 10.1007/s11468-013-9660-5
  2. D.C. Mor, G. Aktug, K. Schmidt, P. Asokan, N. Asai, C.-J. Huang, J. Dostalek. Trends in Analyti-cal Chemistry, 183, 118060 (2025). DOI: 10.1016/j.trac.2024.118060
  3. D. Semeniak, D.F. Cruz, A. Chilkoti, M.H. Mikkelsen. Advanced Materials, 35, 2107986 (2023). DOI: 10.1002/adma.202107986
  4. A.N. Kamalieva, N.A. Toropov, T.A. Vartanyan. Proc. of SPIE, 9884, 98843C (2016). DOI: 10.1117/12.2227805
  5. N. Ibrayev, E. Seliverstova, G. Omarova, A. Kanapina, A. Ishchenko. Materials Today: Proceedings, 71, 100 (2022). DOI: 10.1016/j.matpr.2022.09.615
  6. T.M. Chmereva, M.G. Kucherenko, F.Yu. Mushin, A.P. Rusinov. J. Appl. Spectrosc., 91 (1), 1 (2024). DOI: 10.1007/s10812-024-01682-3
  7. S. Murai, S. Oka, S.I. Azzam, A.V. Kildishev, S. Ishii, K. Tanaka. Optics Express, 27 (4), 5083 (2019). DOI: 10.1364/OE.27.005083
  8. Y. Bian, S. Liu, Y. Zhang, Y. Lui, X. Yang, S. Lou, E. Wu, B. Wu, X. Zhang, Q. Jin. Nanoscale Research Letters, 16, 90 (2021). DOI: 10.1186/s11671-021-03546-7
  9. D. Temirbayeva, N. Ibrayev, M. Kucherenko. J. Luminescence, 243, 118642 (2022). DOI: 10.1016/j.jlumin.2021.118642
  10. N.Kh. Ib-rayev, A.K. Zeinidenov, A.K. Aimukhanov. Opt. Spectrosc., 117, 540 (2014). DOI: 10.1134/S0030400X14100099
  11. N. Ibrayev, A. Ishchenko, D. Afanasyev, N. Zumabay. Appl. Phys. B, 125, 18 (2019). DOI: 10.1007/s00340-019-7292-y
  12. D.A. Afanasyev, N.Kh. Ibrayev, G.S. Omarova, A.V. Kulinich, A.A. Ishchenko. Opt. Spectrosc., 128 (1), 61 (2020). DOI: 10.1134/S0030400X20010026
  13. W.Z.W. Ismail, T.P. Vo, E.M. Goldys, J.M. Dawes. Laser Phys., 25, 085001 (2015). DOI: 10.1088/1054-660X/25/8/085001
  14. D.S. Wiersma. Nature Phys., 4, 359 (2008). DOI: 10.1038/nphys971
  15. V.M. Markushev, V.F. Zolin, Ch.M. Briskina. ZhPS, 45 847 (1986).(in Russian)
  16. W.L. Sha, C.-H. Lui, R.R. Alfano. Opt. Lett., 19 (23), 1922 (1994). DOI: 10.1364/OL.19.001922
  17. O. Popov, A. Zilbershtein, D. Davidov. Appl. Phys. Lett., 89, 191116 (2006). DOI: 10.1063/1.2364857
  18. C.T. Dominguez, R.L. Maltez, R.D. Reis, L.S.A. Melo, C.B. Araujo, A.S.L. Gomes. J. Opt. Soc. Am., 28 (5), 1118 (2011). DOI: 10.1364/JOSAB.28.001118
  19. Y. Wan, L. Deng. Optics Express, 27, 27103 (2019). DOI: 10.1364/OE.27.027103
  20. D. He, W. Bao, L. Long, P. Zhang, M. Jiang, D. Zhang. Optics and Laser Technology, 91, 193 (2017). DOI: 10.1016/j.optlastec.2016.12.036
  21. A. Yadav, L. Zhong, J. Sun, L. Jiang, G.J. Cheng, L. Chi. Nano Convergence, 4, 1 (2017). DOI: 10.1186/s40580-016-0095-5
  22. L. Ye, B. Liu, F. Li, Y. Feng, Y. Cui, Y. Lu. Laser Phys. Lett., 12, 105001 (2016). DOI: 10.1088/1612-2011/13/10/105001
  23. V.A. Donchenko, A.A. Zemlyanov, M.M. Zinovjev, A.N. Paramonova, V.A. Kharenkov. Proc. SPIE, 10035, 1003526-1 (2016). DOI: 10.1117/12.2249339
  24. V.A. Donchenko, A.A. Zemlyanov, M.M. Zinovjev, N.S. Panamarev, A.V. Trifonova, V.A. Kharenkov. Atmospheric and Oceanic Optics, 29 (5), 452 (2016). DOI: 10.1134/S1024856016050055
  25. V.A. Donchenko, I.A. Edreev, A.A. Zemlyanov, V.A. Harenkov. Izv. Vyssh. Uchebn. Zaved., Fizika, 56 (8), 9 (2013) (in Russian)
  26. A.K. Zejnidenov, N.H. Ibraev, M.G. Kucherenko. Vestnik OGU, (in Russian). 9 (170), 96 (2014)
  27. O. Zvelto. Printsipy lazerov (Mir, M., 1990) (in Russian)
  28. I.Yu. Goliney, V.I. Sugakov, L. Valkunas, G.V. Vertsimakha. Chem. Phys., 404, 116 (2012). DOI: 10.1016/j.chemphys.2012.03.011
  29. V.V. Klimov. Nanoplazmonika (Fizmatlit, M., 2009) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru