Effect of plasmonic nanoparticles on generation properties dye molecules
Kucherenko M. G.
1, Rusinov A. P.
1, Mushin F. Yu.
2, Chmereva T. M.
11Center of Laser and Information Biophysics, Orenburg State University, Orenburg, Russia
2Orenburg Presidential Cadet College, Orenburg, Russia
Email: clibph@yandex.ru, sano232@mail.ru, fedor.mushin@yandex.ru, chmereva@yandex.ru
The effect of plasmonic nanoparticles (NP) on the generation of radiation by organic dye molecules has been theoretically and experimentally investigated. To calculate the intensity of radiation generated by molecules in the presence of plasmonic NPS, a theoretical model is proposed that takes into account the change in the rates of spontaneous and stimulated radiation of a molecule, nonradiative relaxation of the molecule, and light absorption by a molecule near the NPS in the velocity equations of a three-level laser. The nonmonotonic dependence of the threshold of generation of an aqueous solution of rhodamine 6G on the concentration of NPS in the solution observed in the experiment is explained on the basis of the proposed model. Keywords: plasmonic nanoparticle, phosphor molecule, stimulated radiation, generation threshold.
- M. Bauch, K. Toma, M. Toma, Q. Zhang, J. Dostalek. Plasmonics, 9, 781 (2014). DOI: 10.1007/s11468-013-9660-5
- D.C. Mor, G. Aktug, K. Schmidt, P. Asokan, N. Asai, C.-J. Huang, J. Dostalek. Trends in Analyti-cal Chemistry, 183, 118060 (2025). DOI: 10.1016/j.trac.2024.118060
- D. Semeniak, D.F. Cruz, A. Chilkoti, M.H. Mikkelsen. Advanced Materials, 35, 2107986 (2023). DOI: 10.1002/adma.202107986
- A.N. Kamalieva, N.A. Toropov, T.A. Vartanyan. Proc. of SPIE, 9884, 98843C (2016). DOI: 10.1117/12.2227805
- N. Ibrayev, E. Seliverstova, G. Omarova, A. Kanapina, A. Ishchenko. Materials Today: Proceedings, 71, 100 (2022). DOI: 10.1016/j.matpr.2022.09.615
- T.M. Chmereva, M.G. Kucherenko, F.Yu. Mushin, A.P. Rusinov. J. Appl. Spectrosc., 91 (1), 1 (2024). DOI: 10.1007/s10812-024-01682-3
- S. Murai, S. Oka, S.I. Azzam, A.V. Kildishev, S. Ishii, K. Tanaka. Optics Express, 27 (4), 5083 (2019). DOI: 10.1364/OE.27.005083
- Y. Bian, S. Liu, Y. Zhang, Y. Lui, X. Yang, S. Lou, E. Wu, B. Wu, X. Zhang, Q. Jin. Nanoscale Research Letters, 16, 90 (2021). DOI: 10.1186/s11671-021-03546-7
- D. Temirbayeva, N. Ibrayev, M. Kucherenko. J. Luminescence, 243, 118642 (2022). DOI: 10.1016/j.jlumin.2021.118642
- N.Kh. Ib-rayev, A.K. Zeinidenov, A.K. Aimukhanov. Opt. Spectrosc., 117, 540 (2014). DOI: 10.1134/S0030400X14100099
- N. Ibrayev, A. Ishchenko, D. Afanasyev, N. Zumabay. Appl. Phys. B, 125, 18 (2019). DOI: 10.1007/s00340-019-7292-y
- D.A. Afanasyev, N.Kh. Ibrayev, G.S. Omarova, A.V. Kulinich, A.A. Ishchenko. Opt. Spectrosc., 128 (1), 61 (2020). DOI: 10.1134/S0030400X20010026
- W.Z.W. Ismail, T.P. Vo, E.M. Goldys, J.M. Dawes. Laser Phys., 25, 085001 (2015). DOI: 10.1088/1054-660X/25/8/085001
- D.S. Wiersma. Nature Phys., 4, 359 (2008). DOI: 10.1038/nphys971
- V.M. Markushev, V.F. Zolin, Ch.M. Briskina. ZhPS, 45 847 (1986).(in Russian)
- W.L. Sha, C.-H. Lui, R.R. Alfano. Opt. Lett., 19 (23), 1922 (1994). DOI: 10.1364/OL.19.001922
- O. Popov, A. Zilbershtein, D. Davidov. Appl. Phys. Lett., 89, 191116 (2006). DOI: 10.1063/1.2364857
- C.T. Dominguez, R.L. Maltez, R.D. Reis, L.S.A. Melo, C.B. Araujo, A.S.L. Gomes. J. Opt. Soc. Am., 28 (5), 1118 (2011). DOI: 10.1364/JOSAB.28.001118
- Y. Wan, L. Deng. Optics Express, 27, 27103 (2019). DOI: 10.1364/OE.27.027103
- D. He, W. Bao, L. Long, P. Zhang, M. Jiang, D. Zhang. Optics and Laser Technology, 91, 193 (2017). DOI: 10.1016/j.optlastec.2016.12.036
- A. Yadav, L. Zhong, J. Sun, L. Jiang, G.J. Cheng, L. Chi. Nano Convergence, 4, 1 (2017). DOI: 10.1186/s40580-016-0095-5
- L. Ye, B. Liu, F. Li, Y. Feng, Y. Cui, Y. Lu. Laser Phys. Lett., 12, 105001 (2016). DOI: 10.1088/1612-2011/13/10/105001
- V.A. Donchenko, A.A. Zemlyanov, M.M. Zinovjev, A.N. Paramonova, V.A. Kharenkov. Proc. SPIE, 10035, 1003526-1 (2016). DOI: 10.1117/12.2249339
- V.A. Donchenko, A.A. Zemlyanov, M.M. Zinovjev, N.S. Panamarev, A.V. Trifonova, V.A. Kharenkov. Atmospheric and Oceanic Optics, 29 (5), 452 (2016). DOI: 10.1134/S1024856016050055
- V.A. Donchenko, I.A. Edreev, A.A. Zemlyanov, V.A. Harenkov. Izv. Vyssh. Uchebn. Zaved., Fizika, 56 (8), 9 (2013) (in Russian)
- A.K. Zejnidenov, N.H. Ibraev, M.G. Kucherenko. Vestnik OGU, (in Russian). 9 (170), 96 (2014)
- O. Zvelto. Printsipy lazerov (Mir, M., 1990) (in Russian)
- I.Yu. Goliney, V.I. Sugakov, L. Valkunas, G.V. Vertsimakha. Chem. Phys., 404, 116 (2012). DOI: 10.1016/j.chemphys.2012.03.011
- V.V. Klimov. Nanoplazmonika (Fizmatlit, M., 2009) (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.