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The influence of band structure anisotropy on the plasma oscillations
propagation along a conductive nanolayer
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A theoretical model of surface plasma oscillations propagation in a conductive nanolayer is constructed taking
into account the symmetrical charge distribution at the nanolayer boundaries. It is assumed that the conductor
constant energy surface is an ellipsoid of revolution. The surface wave frequency is limited from above by the
near IR frequency. The nanolayer thickness can be comparable to or smaller than the charge carrier de Broglie
wavelength. Surface scattering of charge carriers is taken into account through the Soffer boundary conditions.
Analytical expressions are obtained for the wave propagation coefficient, attenuation coefficient, and propagation
length. We conducted the analysis of the surface wave characteristics dependences on the dimensionless parameters:
the conductive layer thickness, the surface wave frequency, the chemical potential, the insulating layer permittivity,
the ,,semiconductor-dielectric” interfaces roughness parameters, and the isoenergetic surface ellipticity parameter.
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Introduction

Currently, research in plasmonics is a rapidly developing
field. There is a transition from traditional electronic
integrated circuits to photonic circuits, in which information
is transmitted not by electric current but by the flow
of photons [1]. Optical fibers and photonic crystals can
be used as optical signal transmission elements; however,
their characteristic size is limited by the wavelength of the
electromagnetic radiation (for the visible range, this size
should be no less than hundreds of nanometers). Using
plasmonic waveguides can solve the problem, since the
plasmon wavelength can be shorter than the wavelength
of electromagnetic radiation. Effects associated with a
wavelength shorter than that of electromagnetic radiation
can be utilized in microscopy to obtain images of objects
whose sizes are smaller than the wavelength of electromag-
netic radiation. All of the above indicates the relevance
of theoretical studies of the features of plasma oscillation
propagation in nanostructures. Modern technologies allow
the creation of nanolayers with characteristic sizes of several
nanometers. In such nanolayers, surface roughness at
the atomic level and size quantization effects of charge
carriers significantly influence transport phenomena. For the
theoretical description of parameters of surface oscillations
propagating along nanolayers, it is necessary to take into ac-
count surface scattering of charge carriers and quantization
of their energy spectrum.

Among the first scientific works devoted to taking into ac-
count surface roughness on the nature of plasma oscillation
propagation, the works [2-4] can be noted. Kretschmann, in
work [2] , used exact solutions of integral equations obtained
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from the problem of electromagnetic wave diffraction on
a rough surface to investigate the plasmon dispersion law.
Surface roughness was accounted for through a Gaussian
correlation function. Kretschmann discovered the splitting
of the maximum of the frequency dependence of the
propagation coefficient due to the presence of roughness.
Later, in works [3,4], the Green’s function method was
employed to account for surface roughness. Among recent
publications, works [5-9] an be noted. These works
obtained expressions only for optical coefficients, but did
not take into account the influence of surface roughness on
the frequency dependence of the plasmon wave number.

Currently, widely used semiconductors include silicon
and germanium, whose constant energy surfaces are not
spherical but consist of several rotational ellipsoids. A
relevant problem is the influence of the anisotropy of the
isoenergetic surface on the nature of plasmon propagation
along silicon and germanium nanolayers. It should be noted
that some semimetals (such as bismuth, antimony, etc.) have
constant energy surfaces consisting of elongated rotational
ellipsoids.  Interest in bismuth is due to pronounced
manifestation of size quantization effects. Size quantization
effects can significantly influence the parameters of the
surface wave.

In this work, a theoretical model of surface plasma
oscillations in a conducting nanolayer is developed, taking
into account quantum transport theory effects, surface
scattering of charge carriers, and the ellipsoidal shape of
the conductive material’s isoenergetic surface. The situation
is considered where the conducting nanolayer is located
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Figure 1. Nanostructure ,dielectric—conductor—dielectric (I —
conducting layer, II — insulating layer). Dashed lines show the
electric field intensity lines.

between two insulating layers with identical dielectric
permittivities.

Problem formulation

Consider the nanostructure
»dielectric—conductor—dielectric®. We assume that
the dielectric layers are non-magnetic and have identical
dielectric permittivities. The conducting nanolayer can be
made from metal or doped semiconductor. A coordinate
system is chosen so that the Z axis is directed perpendicular
to the plane of the nanostructure, and the Xaxis is parallel
to the propagation direction of the surface wave (Fig. 1).
The electric and magnetic components of the surface wave
are assumed to have the following form:

E = {E\, 0, E;}, H = {0, Hy, 0}.

In this work, it is assumed that the insulating layers are
made of non-polar dielectric or wide-bandgap semiconduc-
tor with ionic bonding. In this case, the electric field causes
only electronic and ionic polarization in the dielectric [10],
and the dielectric permittivity can be considered a constant.

In the upper and lower dielectric layers, the components
of the electric and magnetic field intensity vectors satisfy
Maxwell’s equations:

0= —ikE, —|%Hy =0,

aHV +ie2Ex = 0.

Here,w is the frequency of the surface wave, k is the wave
number, ¢ — is the dielectric permittivity of the insulating
layers, and ¢ — is the speed of light.

Substituting the conductivity (1) ¢ = 1 + i4mo/w, where
& — into the system of equations, we obtain the relation
between components of the vectors E and H inside the
conducting layer.

The solution of Maxwell’s equations can be written as
a wave propagating along the X axis and decaying in
the direction perpendicular to the plane of the conducting

Here, o the transverse coefficient of decay that is deter-
mined via the parameters K, w and ¢ by the relation:
2
o
a = k2 — gﬁ' (4)
It is assumed that the surface wave frequency is less than
the plasma resonance frequency. The case of symmetric
distribution of charge carriers at the boundaries of the
conducting layer (Fig. 1) is considered. This situation is
characterized by the following relation between components
of the vectors E and H:

Hy(0) = —Hy(a),
E.(0) = —E:(a), (5)
Ec(0) = Ex(a).

In this work, the conducting nanolayer is considered
sufficiently thin so that components of the electric field
vector Ey slightly vary within it. The thickness of the
nanolayer may be comparable to or less than the de Broglie
wavelength of the charge carriers. In this situation, the
charge carrier system must be considered quantum. The
electron gas shall be reviewed as a quasi-two-dimensional
gas included in a quantum well with infinitely high walls. It
is assumed that the isoenergetic surface is an ellipsoid with
principal axes directed parallel to the X, Y and Zaxes.

The expression for the total energy of a charge carrier in
the I-th subband is:

g = 2m k2 + —k2 + &z1, (6)
(7hl)?
8Z| = 2m3a2 k] (7)

where A — Planck constant, ¢;; — eigenvalue of the charge
carrier in the |-th subband, the index | takes values from 1
to N (N is the total number of subbands), m;, m, and M are
the effective masses of the charge carriers along the X, Y
and Zaxes, respectively.

According to quantum transport theory, the charge carrier
system is described by the density operator: [11]:

p(Z. Ky 1) = > W (z k. 1) (i (2. K. )], (8)
|

which satisfies the quantum Liouville equation:

ap

ih—
at

= [H.0], (9)
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where 1, is the wave function of the charge carrier system 01.2(91.2, 0) = exp(—(4mg; 2 cos 0)?), (17)
in the I-th subband, W is the statistical weight, and k|| is the

longitudinal component of the wave vector. 912 = Os1,2 (18)

In the case of small deviation of the charge carrier
system from equilibrium, the problem of finding the density
operator can be solved within perturbation theory. In this
situation, the Hamiltonian can be written as follows [12]:

H=Ho+V, (10)

where Hy — is the equilibrium Hamiltonian, and V is the
perturbation accounting for bulk and surface scattering.

Note that in some semiconductors, the dependence of
the equilibrium Hamiltonian on the wave number may
significantly differ from the quadratic law. For example, in
p-type semiconductors, spin-orbit interaction greatly affects
the system’s Hamiltonian [13]. The ellipsoidal dispersion
law considered in this work applies to electrons in the
conduction band.

It is assumed that the material of the nanolayer is a metal
or n-type semiconductor in which the equilibrium Hamilto-
nian Hy of the charge carrier system in the conduction band
depends quadratically on the wave number.

Equation (9) can be reduced to the following kinetic
equation for the distribution function of charge carriers in
the I-th subband f|, which plays the role of the diagonal
element of the density matrix py [12,14]:

. hkz|8f| eE8f| . f|—f|0
_|a)f|—|— M E Ea—k”—— 7 s (11)
Ky = mhl/a. (12)

Here 7 is the relaxation time, % is the Planck constant, k5 is
the perpendicular component of the charge carrier velocity
vector in the I-th subband, and, e is the electron (hole)
charge. The kinetic equation (11) involves the components

of the distribution function f{ and f|<1>, which enter the
expansion of f| linear in the external field:

fi(z. k. t) = £ + £V (z, k) exp(—iwt), (13)

© _ 1
e e Y
where % is the equilibrium distribution function, ! is
the nonequilibrium correction, y is the chemical potential,
kg is the Boltzmann constant, and T is temperature.
The relaxation time is considered as a diagonal second-
rank tensor:

1 0 0
T=10 1 0f- (15)
0 0 3

Surface scattering of charge carriers is taken into account
through Soffer boundary conditions [15], imposed on
equation (11):

f|(1)+ _ ql(gl, 9)f|(1)_
£V

if z=0,
D+ (16)

:qz(gz,o)f,( if z=a,
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where f|(1)+ and fl(l)_ are corrections to the distribution
functions of the charge carriers with positive and negative
projections of the wave vector on the Zaxis, respectively;
Os1.2 is the root-mean-square height of the surface roughness
of the upper and lower surfaces; 1p is the de Broglie wave-
length of the charge carrier;0 is the angle of incidence of
the charge carrier on the internal surface of the conducting
nanolayer.

The author of [15] questioned the applicability of this
boundary condition model to semimetals and semiconduc-
tors due to the failure of the far-field approximation used to
compute the amplitude of the scattered de Broglie wave
at the nanolayer boundary. We will show that Soffer’s
model can be used for semiconductors. The charge carrier
system in metals and semiconductors can be considered
as a collection of wave packets formed by the interference
of Bloch waves. The farfield approximation can be
satisfied due to the small size of the wave packet [15].
In semiconductors, phonon and impurity scattering may
change the amplitude of the wave vector (de Broglie
wavelength), i.e., there is a distribution of thermal velocities
of charge carriers. This is an additional factor that affects
the smallness of the wave packet and ensures the validity of
the far-field approximation.

The kinetic equation (11) was derived within perturbation
theory, which limits the allowable values of the root-mean-
square surface roughness height. In this work, it is assumed
that the quantity Qs;» is much smaller than the thickness
of the nanolayer. This assumption leads to parameters gs;
and gsy being less than the de Broglie wavelength Ag of
charge carriers in the case when the nanolayer thickness is
comparable to Ag, which corresponds to the condition for
which the far-field approximation is valid: [16]:

g§1,2
bAg

<1, (19)

where b is a characteristic scale of the de Broglie wave
amplitude variation.

The nonequilibrium distribution function allows calcula-
tion of the current density and integral conductivity by the
formulas: [12,14]:

. 2ek )
= (;,; Zﬂvx (£ + 1177 didiy, — (20)

a.
o= [
0

x

dz. (21)

m

X
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Characteristics of the Surface Wave

After performing a series of mathematical calculations
(Appendix), the following expressions are obtained for the
parameters of the surface wave k and @, normalized by the
nanolayer thickness:

2eyo
A==, 22
¢ (Yo +1y3X) )
X2 4y282
ka = /y3=2p% + — . 23
\/yOX% (y0 + |y%2)2 ( )

Here ¥ is the dimensionless conductivity of the nanolayer,
Xo is the dimensionless thickness, X; is the dimensionless
mean free path of charge carriers, Yo is the dimensionless
frequency of the surface wave, y, is the dimensionless
plasma frequency, and p is the ratio of the characteristic
velocity of the charge carriers to the speed of light.

Note that, in general, the parameters « and K are complex
quantities, i.e., one can write:

a =Re(a) +ilm(a) =a; +iay, (24)

k = Re(k) + iIm(k) = k; + iko. (25)

The real part of k characterizes the wave number, which
we will call the propagation constant. The imaginary
part of k describes the attenuation of the surface wave
along the propagation direction; we call it the longitudinal
attenuation coefficient. The real part of a describes the
attenuation of the surface wave in the direction of the Z
axis; this parameter will be called the transverse attenuation
coefficient.

From a practical point of view, it is of interest to
determine the parameter characterizing the distance over
which the amplitude of the surface wave decreases by a
factor of e due to attenuation (propagation length). From
expressions (2) and (3), it follows that the propagation
length is the reciprocal of the imaginary part of the wave
number k. Normalizing by the thickness of the conducting
nanolayer, we get:

L 1
a Im(ka)’

Most often, the case is realized where the constant energy
surface of semiconductors is a spheroid. For example, the
constant energy surface of silicon consists of six ellipsoids,
and that of germanium consists of eight ellipsoids. In the
analysis of results, we consider the situation where two
principal axes of the triaxial ellipsoid are equal. We examine
three options for the orientation of the ellipsoid’s rotational
axis: the axis is directed along the X axis (longitudinal
orientation), along the Y axis (transverse orientation), and
along the Z axis (perpendicular orientation).

In the case when the principal axis of the ellipsoidal con-
stant energy surface is directed at an arbitrary angle relative
to the wave propagation direction, the problem of finding
the characteristics of plasma oscillations can be reduced to

(26)

20 ;A

(,\)TOU

Figure 2. Dependencies of the propagation coefficient ki, nor-
malized by layer thickness, on the dimensionless frequency wy,
for a/)l,Bo = 1, A/lso = 10, £ = 3, U()U/C = 0.005, WpToy = 200,
01=0,92=0.2, m, /my =0.7. Solid curves /—3 and dashed
curves 4—6 are plotted for degenerate and non-degenerate electron
gas respectively. The curves correspond to the following orienta-
tion options of the constant energy ellipsoid principal axis / and
4 — longitudinal, 2 and 5 — transverse, 3 and 6 — perpendicular.

the situation when the principal axis is aligned with the
axes X and Y, by decomposing the components of the
electric and magnetic field intensity vectors. The resulting
plasma oscillations can be represented as a superposition
of surface plasma oscillations propagating along the axes X
and Y. In the case of multivalley semiconductors (silicon,
germanium, etc.), plasma oscillations can be represented as
a superposition of oscillations of charge carriers located in
each spheroid.

Analysis of results

For numerical analysis of surface wave characteris-
tics, Figures 2 and 3 show results for parameters cor-
responding to an n-type silicon nanolayer with carrier
concentration 10" cm=3. The corresponding dimension-
less parameters are y = 0.7, p = 0.005, y, =200 (y is
the ellipticity parameter, defined as the ratio of the
transverse effective mass to the scalar mass my). In
this situation, at room temperature, the electron gas
can be considered non-degenerate. To compare under
the same dimensionless parameters with the degenerate
electron gas case (without changing the carrier concen-
tration), the temperature is changed. The free path
of charge carriers ignoring surface scattering, included
in the plasma frequency Yy, does not change signifi-
cantly since in a sufficiently thin layer this parameter
is determined by scattering on impurities and lattice de-
fects.

Figure 2 shows the dependence of the propagation
coefficient normalized by layer thickness on the dimen-
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Figure 3. Dependencies of the propagation length L, normalized
by the layer thickness, on the dimensionless frequency wy,
at a/lso =1, A/lso =10, £ =3, Voy/C = 0.005, WpToy = 200,
0:=0, 92=0.2, m; /my =0.7. Solid curves /—3 and dashed
curves 4—6 are plotted for degenerate and non-degenerate electron
gas respectively. The curves correspond to the following orienta-
tion options of the constant energy ellipsoid principal axis: / and
4 longitudinal, 2 and 3 transverse, 3 and 6 perpendicular.

sionless frequency of the surface wave for the longitudinal,
transverse, and perpendicular orientations of the principal
axis of the constant energy ellipsoid. The highest coefficient
ki is observed in the first case (curves / and 4). This
is possibly due to the large longitudinal effective mass
of charge carriers compared to the transverse mass for
an elongated ellipsoid. The difference between curves 2
and 3 (5 and 6) is small and can be explained by differing
influence of surface scattering of charge carriers on the
propagation coefficient k;. In the case when the principal
axis of the ellipsoid is perpendicular to the nanolayer surface
(curves 3, 6), the effective mass of charge carriers in the
direction parallel to the nanolayer plane is less than in
the perpendicular direction. Charge carriers predominantly
move in the longitudinal direction, leading to an increase
in the region of excess charge in the surface wave, ie.,
a decrease in wave number. The figure shows that the
propagation coefficient in the case of a non-degenerate
electron gas is larger than in the case of a degenerate gas,
which is possibly related to the spread of thermal velocities
of the charge carriers.

Figures 3 and 4 show the frequency dependencies of
the surface wave propagation length normalized by the
thickness of the semiconductor nanolayer. The elliptic-
ity parameter of the constant energy surface equals 0.7
(Fig. 3) and 0.5 (Fig. 4). Oscillations in the propagation
length spectra are observed, whose period depends on the
orientation of the principal axis of the constant energy
ellipsoid. These oscillations arise when the frequency of
surface scattering of charge carriers is a multiple of the
frequencies of the electric and magnetic field oscillations
of the surface wave. A possible reason for the oscillations is
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Figure 4. Dependencies of the propagation length L, normalized
by the layer thickness, on the dimensionless frequency wty,
at a/lso =1, A//’LBO =10, ¢ =3, vov/C = 0.005, WpToy = 200,
01=0, 92=0.2, m; /my =0.5. Solid curves /—3 and dashed
curves 4—6 are plotted for degenerate and non-degenerate electron
gas respectively. The curves correspond to the following orienta-
tion options of the constant energy ellipsoid principal axis: / and
4 — longitudinal, 2 and 5 — transverse, 3 and 6 — perpendicular.

similar to that which causes oscillations in the absorption
spectra discovered in [17]. In the cases of longitudinal
and transverse orientations, the oscillation period and the
position of maxima in the propagation length coincide.
This is possibly related to the fact that the effective mass
of charge carriers in the direction perpendicular to the
nanolayer plane will be the same. Consequently, in the
situations described by curves I and 2 (3 and 4), the
frequency of surface scattering of charge carriers will be
the same.

In the case of perpendicular orientation, the effective
mass of charge carriers differs from those in the longitudinal
and transverse orientations, which influences the change
in the oscillation period. Due to the spread of thermal
velocities of charge carriers, the oscillation maxima of
the propagation length are less pronounced in the non-
degenerate gas case than in the degenerate one. The
figures also show that plasma oscillations propagate with
the least attenuation when the rotation axis of the constant
energy ellipsoid is oriented perpendicular to the nanolayer
plane. For a silicon nanolayer 10 nm thick and perpendicular
orientation of the ellipsoid rotation axis, the propagation
length of plasma oscillations at frequencies on the order
of 10 THz can reach several micrometers.

Effects related to oscillations in the frequency dependen-
cies of the propagation length can be used to create thin-film
plasmonic waveguides that filter frequencies corresponding
to minimum attenuation (maxima of the parameter L).

Figures 3 and 4 show that the propagation length of the
wave increases without bound as frequency decreases. This
may indicate the limits of applicability of the theoretical
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m,/my

Figure 5. Dependence of the propagation coefficient k;, normal-
ized by the layer thickness on the ellipticity parameter m, /my
for a/lgo =1, A/;I,BO =10, wty, =30, € =3, Vop/C = 0.005,
®pToy = 200, g1 =0, g2 =0.2. Solid curves /—3 and dashed
curves 4—06 correspond to degenerate and non-degenerate electron
gas cases, respectively. The curves correspond to the following
orientation options of the constant energy ellipsoid principal axis:
1 and 4; longitudinal, 2 and 5; transverse, 3 and 6 perpendicular.

model developed in this work. As shown in Fig. 2,
at the low-frequency limit the parameter K; tends to
zero. The decrease of the propagation coefficient with
decreasing frequency leads to an unlimited increase in the
size of surface regions where positive (negative) charge
accumulates. This work does not consider effects related
to limitations on the size of these regions due to thermal
fluctuations of charge carriers. In typical semiconductors,
the diffusion length of charge carriers can range from tens to
thousands of micrometers. The theoretical model developed
here is applicable when the parameter L is much smaller
than the diffusion length, ie., does not exceed about ten
micrometers.

Figure 5 shows the dependence of the surface wave
propagation coefficient on the ellipticity parameter of the
constant energy surface. The figure demonstrates that with
increasing ellipticity parameter m, /my the propagation coef-
ficient increases for the longitudinal orientation of the main
axis of the ellipsoid, while it decreases in the transverse and
perpendicular orientations. All curves converge at one point
when m,; /my = 1 corresponding to a spherically symmetric
energy band.

Figure 6 shows the dependence of the propagation length
on the ellipticity parameter of the constant energy surface.
The figure shows that when the principal axis of the constant
energy ellipsoid is aligned with the direction of surface wave
propagation, the dimensionless propagation length increases
with increasing ellipticity parameter; in other cases, it
decreases. The dependence L(m, /my) has a pronounced
oscillatory character. The most distinctive oscillations occur
for an elongated rotational ellipsoid (m,/my < 1) and

\ T T T T
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120 [ \ ’
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80 I \.I\ # / T
\ e
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/ 7’ = "/ / 7 — 2 ~ Q 4
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0.4 0.8 1.2 1.6
my/my
Figure 6. Dependence of the surface wave propagation

length L, normalized by the layer thickness, on the ellipticity
parameter m; /my at a/Aso = 1, A/Ago = 10, wry, = 30, € = 3,
vou/C = 0.005, wproy = 200, g1 =0, g2 = 0.2. Solid curves 1—3
and dashed curves 4—6 correspond to degenerate and non-
degenerate electron gas cases, respectively. The curves correspond
to the following orientation options of the constant energy ellipsoid
principal axis: / and 4 — longitudinal, 2 and 5 — transverse, 3
and 6 — perpendicular.

perpendicular orientation of the principal axis. Note that
the constant energy surface in most semiconductors with
anisotropic band structures consists of a set of elongated
rotational ellipsoids; thus, the case my/my <1 is very
common. Using the oscillatory frequency dependence of the
propagation length, it is possible to select a semiconductor
nanolayer with the appropriate ellipticity parameter for
efficient transmission of plasma oscillations with minimal
attenuation. Similarly to Fig. 5, all solid and dashed curves
converge in the case of a spherical band structure of the
semiconductor.

Conclusion

In this work, analytical expressions for the characteristics
of surface plasma oscillations taking into account the
anisotropy of the conductor’s band structure were obtained
as functions of dimensionless parameters: thickness of
the conducting nanolayer, surface wave frequency, dielec-
tric permittivity of external insulating layers, -ellipticity
parameter of the constant energy surface, and surface
roughness parameters. The influence of the anisotropy
of the constant energy surface frequency dependencies
of the wave propagation length was found. The most
pronounced oscillations are observed in the case of an
elongated rotational ellipsoid with the principal axis oriented
perpendicular to the nanolayer plane. It was established that
the dependence of the propagation length on the ellipticity
parameter (semiconductor material) has an oscillatory char-
acter.
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The obtained results can be used for designing plasmonic
waveguides that filter frequencies corresponding to minimal
attenuation.

Appendix

The problem of determining nonequilibrium corrections
to the distribution function and finding the integral conduc-
tivity is solved similarly to [12,14]. By solving the kinetic
equation (11) with boundary condition (16), substituting
the found distribution function into the current density
expression (20), and then into (21), the following expression
for the integral conductivity is obtained:

o = 0p%, (27)
N, €275,
0y = , 28
0 - (28)
In(ex —ugl?) +1
= 2ol 12200173 1/220V1 Z p(u 2l +1)
(29)

2X22()j/3
(= (FR™)):

1 2= 01— G+ (q + 0 —2010p)e" P
= — 1 — p s
X(p) Zp( € ) 1 _ Q1Q2972p
(30)
01.2(91,2, 0) = exp (— (291,21 /%0)?) - (31)
The following dimensionless parameters are introduced:
. a
Zo =VTpw =K — 1Yo, Xo=_—,
Ao
A
X; = ;t_’ Yo = wtov, (32)
BO
1
o VW 1 (33)
71 U /71
Sd
/ udu ’ (34)
exp(u—u,) +1
0
- Mmyvg U — Myvov?
keT> 7 2kgT
1K, H
YT omke T M T keT (39

= YMNMpms, Toy = v/ T1wT2w 3w,
my ms
=,/—, =,/—. 36
Y1 Mo V3 Mo ( )

Parameters Xp, X; are normalized by the de Broglie
wavelength of charge carriers moving with characteristic
velocity vg,, Zg. Parameters Yy are normalized by the scalar
relaxation time of charge carriers 7, ignoring quantization
of their energy spectrum. Velocities vy and v, are the
characteristic speeds of charge carriers with and without
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considering quantization of the energy spectrum, introduced
as follows:

i ()

2
nv UOU =

| ()]

13 ij: {[ vt Odvsdvy, (37)
2 (@)3 > [[[v2tocto. (38)

- myv2 +mzv —|—m3v2 12)

Vi = , 39
| - (39)
mv2 + M2 4+ myv?
V2 _ ( 1Ux m y ms z), (40)
My
hkzl
Uy = s 41
z1 ms ( )
n, and n — are, respectively, the charge carrier

concentrations in the macroscopic sample and in the
nanolayer [12,14].

Calculating expressions (37) and (38) and moving to
dimensionless parameters, we obtain expressions for the
parameters Up and Ug,:

5K 5|3/2

§ E ) 0y — (42)

Up =
3’

Z/expu—uﬂ)—i—l’ (43)

UZ1|2

P= Zln(exp(u#
=1

In the case of a degenerate electron gas v0 and v, re-
duce to the Fermi velocity vF, while for the non-degenerate
gas they are on the order of the average thermal velocity of
charge carriers:

—Uyl?) 4 1). (44)

SkgT
op, = 2L, )
10kgT Zuyl? —Uyl?
v% ~ 0 B 1 Uz1 exp( Uz1 ) (46)
3my T exp(—Uzl?)
The  relationship  between  the  dimensionless

parametersu;; and Ug, can be found using the expression
for the charge carrier velocity v;; (41) and the wave
number K;; (

/uoU [Move, /My h 2msa
Uz1 M3 V71 m; MyAgo h
— ./ % 2Xo = 2X0\/75. (47)

In the case of degenerate electron gas (expu, > 1) the
dimensionless conductivity 3 takes the form:

4XoZoV1\/_ Z < 4V3X2>

(). e
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N = [2%0y/73]. (49)
where Kr is the wave vector of a charge carrier with Fermi
energy.

In contrast, for a non—degenerate electron gas, the
dimensionless conductivity (expu, < 1) is determined as:

Zixozoyl y3\/>z (_8721(2))
()

The further solution of the problem is aimed at finding
the relation between the surface wave parameters and the
integral conductivity. We calculate the ratio of the electric
field intensity vector component Ex to the magnetic field
intensity component Hy near the upper boundary of the
conducting nanolayer (surface impedance) at the boundary
z =0. Representing the components of the electric and
magnetic field intensity vectors as:

Ex = Eox(z) exp(—iwt + ikx),
E, = Eyz(2) exp(—iwt + ikx), (51)
Hy = Hoy(z) exp(—iot + ikx).

In this work, the conducting nanolayer is considered
to have thickness smaller than the de Broglie wavelength
of the charge carriers. In typical metals, the de Broglie
wavelength is on the order of the interatomic distance;
in typical semiconductors, it is several nanometers, which
is significantly smaller than the skin depth. At terahertz
frequencies, this depth is on the order of hundreds of
nanometers. At terahertz frequencies, this depth is on the
order of hundreds of nanometers. From the condition of
symmetric distribution of charge carriers at the boundaries
of the conducting nanolayer (5), it follows that the X-
component of the electric field intensity practically does not
change across the thickness of the conducting nanolayer.

To find the surface impedance, it is convenient to use
the third equation of system (1). Integrating this equation
over zZ, we get

Hy(a) — Hy(0) :—%/de-Fi%Ex- (52)

Taking into account the condition (5) and using the relation
between the current density and integral conductivity (21),
the expression for the surface impedance takes the form:

Ey 2ic

h| = arama) (53)

Z = .
! ,—0 (wa+d4mio)

Now, we find the surface impedance using the second
equation of system (1), which describes the wave behavior
in the insulating layer:

- (54)

The components Ex and Hy do not change when crossing
the ,,conductor-dielectric® boundary. Therefore, the surface
impedances Z; and Z, are equal. Equating (54) and (53),
we obtain the expression for the transverse decay coefficient
of the surface wave:

2ew
= 55
“ (wa +4mio) (53)
By using the relationship (4), we will obtain an expression
for the wave vector of the surface wave:

w2
k—\/?f,‘—'—

We normalize the parameters Kk and aby the thickness
of the conducting nanolayer and write expressions (55) and
(56) through dimensionless parameters:

4e2¢?

wa + 4ric?’ (56)

_ 2y
@ o vi) o7

X2 4y232
ka = (/y2——2 0 , 58
\/yoxﬁpze2 * (Yo +iy3Z)? (58)
where the following notations are introduced: p = vg,/C,
yp = Cl)pT()U.
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