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The influence of band structure anisotropy on the plasma oscillations
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A theoretical model of surface plasma oscillations propagation in a conductive nanolayer is constructed taking

into account the symmetrical charge distribution at the nanolayer boundaries. It is assumed that the conductor

constant energy surface is an ellipsoid of revolution. The surface wave frequency is limited from above by the

near IR frequency. The nanolayer thickness can be comparable to or smaller than the charge carrier de Broglie

wavelength. Surface scattering of charge carriers is taken into account through the Soffer boundary conditions.

Analytical expressions are obtained for the wave propagation coefficient, attenuation coefficient, and propagation

length. We conducted the analysis of the surface wave characteristics dependences on the dimensionless parameters:

the conductive layer thickness, the surface wave frequency, the chemical potential, the insulating layer permittivity,

the
”
semiconductor-dielectric“ interfaces roughness parameters, and the isoenergetic surface ellipticity parameter.
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Introduction

Currently, research in plasmonics is a rapidly developing

field. There is a transition from traditional electronic

integrated circuits to photonic circuits, in which information

is transmitted not by electric current but by the flow

of photons [1]. Optical fibers and photonic crystals can

be used as optical signal transmission elements; however,

their characteristic size is limited by the wavelength of the

electromagnetic radiation (for the visible range, this size

should be no less than hundreds of nanometers). Using

plasmonic waveguides can solve the problem, since the

plasmon wavelength can be shorter than the wavelength

of electromagnetic radiation. Effects associated with a

wavelength shorter than that of electromagnetic radiation

can be utilized in microscopy to obtain images of objects

whose sizes are smaller than the wavelength of electromag-

netic radiation. All of the above indicates the relevance

of theoretical studies of the features of plasma oscillation

propagation in nanostructures. Modern technologies allow

the creation of nanolayers with characteristic sizes of several

nanometers. In such nanolayers, surface roughness at

the atomic level and size quantization effects of charge

carriers significantly influence transport phenomena. For the

theoretical description of parameters of surface oscillations

propagating along nanolayers, it is necessary to take into ac-

count surface scattering of charge carriers and quantization

of their energy spectrum.

Among the first scientific works devoted to taking into ac-

count surface roughness on the nature of plasma oscillation

propagation, the works [2–4] can be noted. Kretschmann, in

work [2] , used exact solutions of integral equations obtained

from the problem of electromagnetic wave diffraction on

a rough surface to investigate the plasmon dispersion law.

Surface roughness was accounted for through a Gaussian

correlation function. Kretschmann discovered the splitting

of the maximum of the frequency dependence of the

propagation coefficient due to the presence of roughness.

Later, in works [3,4], the Green’s function method was

employed to account for surface roughness. Among recent

publications, works [5–9] an be noted. These works

obtained expressions only for optical coefficients, but did

not take into account the influence of surface roughness on

the frequency dependence of the plasmon wave number.

Currently, widely used semiconductors include silicon

and germanium, whose constant energy surfaces are not

spherical but consist of several rotational ellipsoids. A

relevant problem is the influence of the anisotropy of the

isoenergetic surface on the nature of plasmon propagation

along silicon and germanium nanolayers. It should be noted

that some semimetals (such as bismuth, antimony, etc.) have

constant energy surfaces consisting of elongated rotational

ellipsoids. Interest in bismuth is due to pronounced

manifestation of size quantization effects. Size quantization

effects can significantly influence the parameters of the

surface wave.

In this work, a theoretical model of surface plasma

oscillations in a conducting nanolayer is developed, taking

into account quantum transport theory effects, surface

scattering of charge carriers, and the ellipsoidal shape of

the conductive material’s isoenergetic surface. The situation

is considered where the conducting nanolayer is located
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Figure 1. Nanostructure
”
dielectric−conductor−dielectric“ (I —

conducting layer, II — insulating layer). Dashed lines show the

electric field intensity lines.

between two insulating layers with identical dielectric

permittivities.

Problem formulation

Consider the nanostructure

”
dielectric−conductor−dielectric“. We assume that

the dielectric layers are non-magnetic and have identical

dielectric permittivities. The conducting nanolayer can be

made from metal or doped semiconductor. A coordinate

system is chosen so that the Z axis is directed perpendicular

to the plane of the nanostructure, and the Xaxis is parallel

to the propagation direction of the surface wave (Fig. 1).
The electric and magnetic components of the surface wave

are assumed to have the following form:

E = {Ex , 0, Ez}, H = {0,Hy , 0}.

In this work, it is assumed that the insulating layers are

made of non-polar dielectric or wide-bandgap semiconduc-

tor with ionic bonding. In this case, the electric field causes

only electronic and ionic polarization in the dielectric [10],
and the dielectric permittivity can be considered a constant.

In the upper and lower dielectric layers, the components

of the electric and magnetic field intensity vectors satisfy

Maxwell’s equations:



















∂Ex
∂z

− ikEz − i ωc Hy = 0,

−iε ωc Ez + ikHy = 0,

− ∂Hy

∂z + iε ωc Ex = 0.

(1)

Here,ω is the frequency of the surface wave, k is the wave

number, ε — is the dielectric permittivity of the insulating

layers, and c — is the speed of light.

Substituting the conductivity (1) ε = 1 + i4πσ/ω, where

ε — into the system of equations, we obtain the relation

between components of the vectors E and H inside the

conducting layer.

The solution of Maxwell’s equations can be written as

a wave propagating along the X axis and decaying in

the direction perpendicular to the plane of the conducting

nanolayer:






E = E0 exp(−iωt + αz + ikx), z < 0,

E = E0 exp(−iωt + α(a − z ) + ikx), z > a,
(2)







H = H0 exp(−iωt + αz + ikx), z < 0,

H = H0 exp(−iωt + α(a − z ) + ikx), z > a .
(3)

Here, α the transverse coefficient of decay that is deter-

mined via the parameters k, ω and ε by the relation:

α =

√

k2 − ω2

c2
ε. (4)

It is assumed that the surface wave frequency is less than

the plasma resonance frequency. The case of symmetric

distribution of charge carriers at the boundaries of the

conducting layer (Fig. 1) is considered. This situation is

characterized by the following relation between components

of the vectors E and H:


















Hy (0) = −Hy(a),

Ez (0) = −Ez (a),

Ex (0) = Ex (a).

(5)

In this work, the conducting nanolayer is considered

sufficiently thin so that components of the electric field

vector Ex slightly vary within it. The thickness of the

nanolayer may be comparable to or less than the de Broglie

wavelength of the charge carriers. In this situation, the

charge carrier system must be considered quantum. The

electron gas shall be reviewed as a quasi-two-dimensional

gas included in a quantum well with infinitely high walls. It

is assumed that the isoenergetic surface is an ellipsoid with

principal axes directed parallel to the X , Y and Zaxes.
The expression for the total energy of a charge carrier in

the l-th subband is:

εl =
~
2

2m1

k2
x +

~
2

2m2

k2
y + εz l, (6)

εz l =
(π~l)2

2m3a2
, (7)

where ~ — Planck constant, εz l — eigenvalue of the charge

carrier in the l-th subband, the index l takes values from 1

to N (N is the total number of subbands), m1, m2 and m3 are

the effective masses of the charge carriers along the X , Y
and Zaxes, respectively.
According to quantum transport theory, the charge carrier

system is described by the density operator: [11]:

ρ̂(z , k‖, t) =
∑

l

Wl|ψl(z , k‖, t)〉〈ψl(z , k‖, t)|, (8)

which satisfies the quantum Liouville equation:

i~
∂ρ̂

∂t
=

[

Ĥ, ρ̂
]

, (9)
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where ψl is the wave function of the charge carrier system

in the l-th subband, Wl is the statistical weight, and k‖ is the

longitudinal component of the wave vector.

In the case of small deviation of the charge carrier

system from equilibrium, the problem of finding the density

operator can be solved within perturbation theory. In this

situation, the Hamiltonian can be written as follows [12]:

Ĥ = Ĥ0 + V̂ , (10)

where Ĥ0 — is the equilibrium Hamiltonian, and V is the

perturbation accounting for bulk and surface scattering.

Note that in some semiconductors, the dependence of

the equilibrium Hamiltonian on the wave number may

significantly differ from the quadratic law. For example, in

p-type semiconductors, spin-orbit interaction greatly affects

the system’s Hamiltonian [13]. The ellipsoidal dispersion

law considered in this work applies to electrons in the

conduction band.

It is assumed that the material of the nanolayer is a metal

or n-type semiconductor in which the equilibrium Hamilto-

nian Ĥ0 of the charge carrier system in the conduction band

depends quadratically on the wave number.

Equation (9) can be reduced to the following kinetic

equation for the distribution function of charge carriers in

the l-th subband f l , which plays the role of the diagonal

element of the density matrix ρll [12,14]:

−iω f l +
~kz l

m3

∂ f l

∂z
+

eE
~

∂ f l

∂k‖
= − f l − f 0

l

τ
, (11)

kz l = π~l/a . (12)

Here τ is the relaxation time, ~ is the Planck constant, kz l is

the perpendicular component of the charge carrier velocity

vector in the l-th subband, and, e is the electron (hole)
charge. The kinetic equation (11) involves the components

of the distribution function f 0
l and f (1)

l , which enter the

expansion of f l linear in the external field:

f l(z , k‖, t) = f (0)
l + f (1)

l (z , k‖) exp(−iωt), (13)

f (0)
l =

1

1 + exp((εl − µ)/kBT )
, (14)

where f (0)
l is the equilibrium distribution function, f (1)

l is

the nonequilibrium correction, µ is the chemical potential,

kB is the Boltzmann constant, and T is temperature.

The relaxation time is considered as a diagonal second-

rank tensor:

τ =







τ1 0 0

0 τ2 0

0 0 τ3






. (15)

Surface scattering of charge carriers is taken into account

through Soffer boundary conditions [15], imposed on

equation (11):






f (1)+
l = q1(g1, θ) f (1)−

l if z = 0,

f (1)−
l = q2(g2, θ) f (1)+

l if z = a,
(16)

q1,2(g1,2, θ) = exp(−(4πg1,2 cos θ)
2), (17)

g1,2 =
gs1,2

λB
, (18)

where f (1)+
l and f (1)−

l are corrections to the distribution

functions of the charge carriers with positive and negative

projections of the wave vector on the Zaxis, respectively;
gs1,2 is the root-mean-square height of the surface roughness

of the upper and lower surfaces; λB is the de Broglie wave-

length of the charge carrier;θ is the angle of incidence of

the charge carrier on the internal surface of the conducting

nanolayer.

The author of [15] questioned the applicability of this

boundary condition model to semimetals and semiconduc-

tors due to the failure of the far-field approximation used to

compute the amplitude of the scattered de Broglie wave

at the nanolayer boundary. We will show that Soffer’s

model can be used for semiconductors. The charge carrier

system in metals and semiconductors can be considered

as a collection of wave packets formed by the interference

of Bloch waves. The far-field approximation can be

satisfied due to the small size of the wave packet [15].

In semiconductors, phonon and impurity scattering may

change the amplitude of the wave vector (de Broglie

wavelength), i.e., there is a distribution of thermal velocities

of charge carriers. This is an additional factor that affects

the smallness of the wave packet and ensures the validity of

the far-field approximation.

The kinetic equation (11) was derived within perturbation

theory, which limits the allowable values of the root-mean-

square surface roughness height. In this work, it is assumed

that the quantity gs1,2 is much smaller than the thickness

of the nanolayer. This assumption leads to parameters gs1

and gs2 being less than the de Broglie wavelength λB of

charge carriers in the case when the nanolayer thickness is

comparable to λB, which corresponds to the condition for

which the far-field approximation is valid: [16]:

g2
s1,2

bλB
≪ 1, (19)

where b is a characteristic scale of the de Broglie wave

amplitude variation.

The nonequilibrium distribution function allows calcula-

tion of the current density and integral conductivity by the

formulas: [12,14]:

jx =
2ekz1

(2π)3

∑

l

x
vx

(

f (1)
l + f (1)−

l

)

dkxdky , (20)

σ =

a
∫

0

jx

Ex
dz . (21)
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Characteristics of the Surface Wave

After performing a series of mathematical calculations

(Appendix), the following expressions are obtained for the

parameters of the surface wave k and α, normalized by the

nanolayer thickness:

αa = − 2εy0

(y0 + iy2
p6)

, (22)

ka =

√

y2
0

x2
0

x2
λ

ρ2ε +
4y2

0ε
2

(y0 + iy2
p6)2

. (23)

Here 6 is the dimensionless conductivity of the nanolayer,

x0 is the dimensionless thickness, xλ is the dimensionless

mean free path of charge carriers, y0 is the dimensionless

frequency of the surface wave, y p is the dimensionless

plasma frequency, and ρ is the ratio of the characteristic

velocity of the charge carriers to the speed of light.

Note that, in general, the parameters α and k are complex

quantities, i.e., one can write:

α = Re(α) + iIm(α) = α1 + iα2, (24)

k = Re(k) + iIm(k) = k1 + ik2. (25)

The real part of k characterizes the wave number, which

we will call the propagation constant. The imaginary

part of k describes the attenuation of the surface wave

along the propagation direction; we call it the longitudinal

attenuation coefficient. The real part of α describes the

attenuation of the surface wave in the direction of the Z
axis; this parameter will be called the transverse attenuation

coefficient.

From a practical point of view, it is of interest to

determine the parameter characterizing the distance over

which the amplitude of the surface wave decreases by a

factor of e due to attenuation (propagation length). From

expressions (2) and (3), it follows that the propagation

length is the reciprocal of the imaginary part of the wave

number k . Normalizing by the thickness of the conducting

nanolayer, we get:
L
a

=
1

Im(ka)
. (26)

Most often, the case is realized where the constant energy

surface of semiconductors is a spheroid. For example, the

constant energy surface of silicon consists of six ellipsoids,

and that of germanium consists of eight ellipsoids. In the

analysis of results, we consider the situation where two

principal axes of the triaxial ellipsoid are equal. We examine

three options for the orientation of the ellipsoid’s rotational

axis: the axis is directed along the X axis (longitudinal
orientation), along the Y axis (transverse orientation), and
along the Z axis (perpendicular orientation).
In the case when the principal axis of the ellipsoidal con-

stant energy surface is directed at an arbitrary angle relative

to the wave propagation direction, the problem of finding

the characteristics of plasma oscillations can be reduced to

0 10 20 30
0

0.5

1.0

2.0

ωτ0v

k
a
1

1.5

40

1

4

2

3, 6

5

Figure 2. Dependencies of the propagation coefficient k1, nor-

malized by layer thickness, on the dimensionless frequency ωτ0v
for a/λB0 = 1, 3/λB0 = 10, ε = 3, v0v/c = 0.005, ωpτ0v = 200,

g1 = 0, g2 = 0.2, m⊥/m0 = 0.7. Solid curves 1−3 and dashed

curves 4−6 are plotted for degenerate and non-degenerate electron

gas respectively. The curves correspond to the following orienta-

tion options of the constant energy ellipsoid principal axis 1 and

4 — longitudinal, 2 and 5 — transverse, 3 and 6 — perpendicular.

the situation when the principal axis is aligned with the

axes X and Y , by decomposing the components of the

electric and magnetic field intensity vectors. The resulting

plasma oscillations can be represented as a superposition

of surface plasma oscillations propagating along the axes X
and Y . In the case of multivalley semiconductors (silicon,
germanium, etc.), plasma oscillations can be represented as

a superposition of oscillations of charge carriers located in

each spheroid.

Analysis of results

For numerical analysis of surface wave characteris-

tics, Figures 2 and 3 show results for parameters cor-

responding to an n-type silicon nanolayer with carrier

concentration 1018 cm−3. The corresponding dimension-

less parameters are γ = 0.7, ρ = 0.005, y p = 200 (γ is

the ellipticity parameter, defined as the ratio of the

transverse effective mass to the scalar mass m0). In

this situation, at room temperature, the electron gas

can be considered non-degenerate. To compare under

the same dimensionless parameters with the degenerate

electron gas case (without changing the carrier concen-

tration), the temperature is changed. The free path

of charge carriers ignoring surface scattering, included

in the plasma frequency y p, does not change signifi-

cantly since in a sufficiently thin layer this parameter

is determined by scattering on impurities and lattice de-

fects.

Figure 2 shows the dependence of the propagation

coefficient normalized by layer thickness on the dimen-
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Figure 3. Dependencies of the propagation length L, normalized

by the layer thickness, on the dimensionless frequency ωτ0v
at a/λB0 = 1, 3/λB0 = 10, ε = 3, v0v/c = 0.005, ωpτ0v = 200,

g1 = 0, g2 = 0.2, m⊥/m0 = 0.7. Solid curves 1−3 and dashed

curves 4−6 are plotted for degenerate and non-degenerate electron

gas respectively. The curves correspond to the following orienta-

tion options of the constant energy ellipsoid principal axis: 1 and

4 longitudinal, 2 and 5 transverse, 3 and 6 perpendicular.

sionless frequency of the surface wave for the longitudinal,

transverse, and perpendicular orientations of the principal

axis of the constant energy ellipsoid. The highest coefficient

k1 is observed in the first case (curves 1 and 4). This

is possibly due to the large longitudinal effective mass

of charge carriers compared to the transverse mass for

an elongated ellipsoid. The difference between curves 2

and 3 (5 and 6) is small and can be explained by differing

influence of surface scattering of charge carriers on the

propagation coefficient k1. In the case when the principal

axis of the ellipsoid is perpendicular to the nanolayer surface

(curves 3, 6), the effective mass of charge carriers in the

direction parallel to the nanolayer plane is less than in

the perpendicular direction. Charge carriers predominantly

move in the longitudinal direction, leading to an increase

in the region of excess charge in the surface wave, i.e.,

a decrease in wave number. The figure shows that the

propagation coefficient in the case of a non-degenerate

electron gas is larger than in the case of a degenerate gas,

which is possibly related to the spread of thermal velocities

of the charge carriers.

Figures 3 and 4 show the frequency dependencies of

the surface wave propagation length normalized by the

thickness of the semiconductor nanolayer. The elliptic-

ity parameter of the constant energy surface equals 0.7

(Fig. 3) and 0.5 (Fig. 4). Oscillations in the propagation

length spectra are observed, whose period depends on the

orientation of the principal axis of the constant energy

ellipsoid. These oscillations arise when the frequency of

surface scattering of charge carriers is a multiple of the

frequencies of the electric and magnetic field oscillations

of the surface wave. A possible reason for the oscillations is

0 10 20 30
0

ωτ0v

40

1

4

2

3

5

50

100

250

L
/a 150

200 6

Figure 4. Dependencies of the propagation length L, normalized

by the layer thickness, on the dimensionless frequency ωτ0v
at a/λB0 = 1, 3/λB0 = 10, ε = 3, v0v/c = 0.005, ωpτ0v = 200,

g1 = 0, g2 = 0.2, m⊥/m0 = 0.5. Solid curves 1−3 and dashed

curves 4−6 are plotted for degenerate and non-degenerate electron

gas respectively. The curves correspond to the following orienta-

tion options of the constant energy ellipsoid principal axis: 1 and

4 — longitudinal, 2 and 5 — transverse, 3 and 6 — perpendicular.

similar to that which causes oscillations in the absorption

spectra discovered in [17]. In the cases of longitudinal

and transverse orientations, the oscillation period and the

position of maxima in the propagation length coincide.

This is possibly related to the fact that the effective mass

of charge carriers in the direction perpendicular to the

nanolayer plane will be the same. Consequently, in the

situations described by curves 1 and 2 (3 and 4), the

frequency of surface scattering of charge carriers will be

the same.

In the case of perpendicular orientation, the effective

mass of charge carriers differs from those in the longitudinal

and transverse orientations, which influences the change

in the oscillation period. Due to the spread of thermal

velocities of charge carriers, the oscillation maxima of

the propagation length are less pronounced in the non-

degenerate gas case than in the degenerate one. The

figures also show that plasma oscillations propagate with

the least attenuation when the rotation axis of the constant

energy ellipsoid is oriented perpendicular to the nanolayer

plane. For a silicon nanolayer 10 nm thick and perpendicular

orientation of the ellipsoid rotation axis, the propagation

length of plasma oscillations at frequencies on the order

of 10 THz can reach several micrometers.

Effects related to oscillations in the frequency dependen-

cies of the propagation length can be used to create thin-film

plasmonic waveguides that filter frequencies corresponding

to minimum attenuation (maxima of the parameter L).

Figures 3 and 4 show that the propagation length of the

wave increases without bound as frequency decreases. This

may indicate the limits of applicability of the theoretical

Optics and Spectroscopy, 2025, Vol. 133, No. 6
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Figure 5. Dependence of the propagation coefficient k1, normal-

ized by the layer thickness on the ellipticity parameter m⊥/m0

for a/λB0 = 1, 3/λB0 = 10, ωτ0v = 30, ε = 3, v0v/c = 0.005,

ωpτ0v = 200, g1 = 0, g2 = 0.2. Solid curves 1−3 and dashed

curves 4−6 correspond to degenerate and non-degenerate electron

gas cases, respectively. The curves correspond to the following

orientation options of the constant energy ellipsoid principal axis:

1 and 4; longitudinal, 2 and 5; transverse, 3 and 6 perpendicular.

model developed in this work. As shown in Fig. 2,

at the low-frequency limit the parameter k1 tends to

zero. The decrease of the propagation coefficient with

decreasing frequency leads to an unlimited increase in the

size of surface regions where positive (negative) charge

accumulates. This work does not consider effects related

to limitations on the size of these regions due to thermal

fluctuations of charge carriers. In typical semiconductors,

the diffusion length of charge carriers can range from tens to

thousands of micrometers. The theoretical model developed

here is applicable when the parameter L is much smaller

than the diffusion length, i.e., does not exceed about ten

micrometers.

Figure 5 shows the dependence of the surface wave

propagation coefficient on the ellipticity parameter of the

constant energy surface. The figure demonstrates that with

increasing ellipticity parameter m⊥/m0 the propagation coef-

ficient increases for the longitudinal orientation of the main

axis of the ellipsoid, while it decreases in the transverse and

perpendicular orientations. All curves converge at one point

when m⊥/m0 = 1 corresponding to a spherically symmetric

energy band.

Figure 6 shows the dependence of the propagation length

on the ellipticity parameter of the constant energy surface.

The figure shows that when the principal axis of the constant

energy ellipsoid is aligned with the direction of surface wave

propagation, the dimensionless propagation length increases

with increasing ellipticity parameter; in other cases, it

decreases. The dependence L(m⊥/m0) has a pronounced

oscillatory character. The most distinctive oscillations occur

for an elongated rotational ellipsoid (m⊥/m0 < 1) and

0.4 0.8 1.2
0

40

80

160

L
/a

120

1.6

1

4

2

3

5

m m/⊥ 0

6

Figure 6. Dependence of the surface wave propagation

length L, normalized by the layer thickness, on the ellipticity

parameter m⊥/m0 at a/λB0 = 1, 3/λB0 = 10, ωτ0v = 30, ε = 3,

v0v/c = 0.005, ωpτ0v = 200, g1 = 0, g2 = 0.2. Solid curves 1−3

and dashed curves 4−6 correspond to degenerate and non-

degenerate electron gas cases, respectively. The curves correspond

to the following orientation options of the constant energy ellipsoid

principal axis: 1 and 4 — longitudinal, 2 and 5 — transverse, 3

and 6 — perpendicular.

perpendicular orientation of the principal axis. Note that

the constant energy surface in most semiconductors with

anisotropic band structures consists of a set of elongated

rotational ellipsoids; thus, the case m⊥/m0 < 1 is very

common. Using the oscillatory frequency dependence of the

propagation length, it is possible to select a semiconductor

nanolayer with the appropriate ellipticity parameter for

efficient transmission of plasma oscillations with minimal

attenuation. Similarly to Fig. 5, all solid and dashed curves

converge in the case of a spherical band structure of the

semiconductor.

Conclusion

In this work, analytical expressions for the characteristics

of surface plasma oscillations taking into account the

anisotropy of the conductor’s band structure were obtained

as functions of dimensionless parameters: thickness of

the conducting nanolayer, surface wave frequency, dielec-

tric permittivity of external insulating layers, ellipticity

parameter of the constant energy surface, and surface

roughness parameters. The influence of the anisotropy

of the constant energy surface frequency dependencies

of the wave propagation length was found. The most

pronounced oscillations are observed in the case of an

elongated rotational ellipsoid with the principal axis oriented

perpendicular to the nanolayer plane. It was established that

the dependence of the propagation length on the ellipticity

parameter (semiconductor material) has an oscillatory char-

acter.

Optics and Spectroscopy, 2025, Vol. 133, No. 6
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The obtained results can be used for designing plasmonic

waveguides that filter frequencies corresponding to minimal

attenuation.

Appendix

The problem of determining nonequilibrium corrections

to the distribution function and finding the integral conduc-

tivity is solved similarly to [12,14]. By solving the kinetic

equation (11) with boundary condition (16), substituting

the found distribution function into the current density

expression (20), and then into (21), the following expression

for the integral conductivity is obtained:

σ = σ06, (27)

σ0 =
nve2τ0v

m0

, (28)

6 =

√
u0v

2x0I1/2z 0γ1
√
γ3

∞
∑

l=1

ln(exp(uµ − uz1l
2) + 1)

×
(

1− χ

(

2x2
0z 0γ3

lxλ

))

,

(29)

χ(p) =
1

2p
(1− e−p)

2− q1 − q2 + (q1 + q2 − 2q1q2)e−p

1− q1q2e−2p
,

(30)
q1,2(g1,2, θ) = exp

(

−(2g1,2l/x0)
2
)

. (31)

The following dimensionless parameters are introduced:

z 0 = ντ0v = κ − iy0, x0 =
a
λB0

,

xλ =
3

λB0

, y0 = ωτ0v, (32)

κ =
τ0v

τ1
=

√
u0√
u0v

1√
γ1
, (33)

Is =

∞
∫

0

us du
exp(u − uµ) + 1

, (34)

u0 =
m0v

2
0

2kBT
, u0v =

m0v0v
2

2kBT
,

uz1 =
~
2k2

z1

2m3kBT
, uµ =

µ

kBT
, (35)

m0 = 3
√

m1m2m3, τ0v = 3
√
τ1vτ2vτ3v ,

γ1 =

√

m1

m0

, γ3 =

√

m3

m0

. (36)

Parameters x0, xλ are normalized by the de Broglie

wavelength of charge carriers moving with characteristic

velocity υ0υ, z 0. Parameters y0 are normalized by the scalar

relaxation time of charge carriers τ0v ignoring quantization

of their energy spectrum. Velocities υ0 and υ0υ are the

characteristic speeds of charge carriers with and without

considering quantization of the energy spectrum, introduced

as follows:

nv20 = 4
(m0

h

)3

v1
5

3

∞
∑

l=1

x
V 2

l f (0)
l dvxdvy , (37)

nvv
2
0v = 2

(m0

h

)3 5

3

y
V 2 f 0d3v, (38)

V 2
l =

m1v
2
x + m2v

2
y + m3v

2
z1l

2)

m0

, (39)

V 2 =
(m1v

2
x + m2v

2
y + m3v

2
z )

m0

, (40)

vz1 =
~kz1

m3

, (41)

nv and n — are, respectively, the charge carrier

concentrations in the macroscopic sample and in the

nanolayer [12,14].
Calculating expressions (37) and (38) and moving to

dimensionless parameters, we obtain expressions for the

parameters u0 and u0v :

u0 =
5

3

K
P
, u0v =

5

3

I3/2
I1/2

, (42)

K =

∞
∑

l=1

∞
∫

uz1l2

udu
exp(u − uµ) + 1

, (43)

P =

∞
∑

l=1

ln(exp(uµ − uz1l
2) + 1). (44)

In the case of a degenerate electron gas υ0 and υv0 re-

duce to the Fermi velocity υF , while for the non-degenerate

gas they are on the order of the average thermal velocity of

charge carriers:

v20v ≈
5kBT

m0

, (45)

v20 ≈
10kBT
3m0

(

1 +
6uz1l2 exp(−uz1l2)
6 exp(−uz1l2)

)

. (46)

The relationship between the dimensionless

parametersuz1 and u0v can be found using the expression

for the charge carrier velocity υz1 (41) and the wave

number kz1 (12):
√

u0v

vz1
=

√

m0

m3

v0v

vz1
=

√

m0

m3

h
m0λB0

2m3a
h

=

√

m3

m0

2x0 = 2x0

√
γ3. (47)

In the case of degenerate electron gas (exp uµ ≫ 1) the

dimensionless conductivity 6 takes the form:

6 =
3

4x0z 0γ1
√
γ3

n
∑

l=1

(

1− l2

4γ3x2
0

)

×
(

1− χ

(

2x2
0z 0γ3

xλ l

))

, (48)
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N = [2x0

√
γ3], (49)

where kF is the wave vector of a charge carrier with Fermi

energy.

In contrast, for a non-degenerate electron gas, the

dimensionless conductivity (exp uµ ≪ 1) is determined as:

∑

=
1

x0z 0γ1
√
γ3

√

5

2π

∞
∑

l=1

exp

(

− 5l2

8γ3x2
0

)

×
(

1− χ

(

2x2
0γ3z 0

xλl

))

. (50)

The further solution of the problem is aimed at finding

the relation between the surface wave parameters and the

integral conductivity. We calculate the ratio of the electric

field intensity vector component Ex to the magnetic field

intensity component Hy near the upper boundary of the

conducting nanolayer (surface impedance) at the boundary

z = 0. Representing the components of the electric and

magnetic field intensity vectors as:


















Ex = E0x(z ) exp(−iωt + ikx),

Ez = E0z (z ) exp(−iωt + ikx),

Hy = H0y(z ) exp(−iωt + ikx).

(51)

In this work, the conducting nanolayer is considered

to have thickness smaller than the de Broglie wavelength

of the charge carriers. In typical metals, the de Broglie

wavelength is on the order of the interatomic distance;

in typical semiconductors, it is several nanometers, which

is significantly smaller than the skin depth. At terahertz

frequencies, this depth is on the order of hundreds of

nanometers. At terahertz frequencies, this depth is on the

order of hundreds of nanometers. From the condition of

symmetric distribution of charge carriers at the boundaries

of the conducting nanolayer (5), it follows that the x -
component of the electric field intensity practically does not

change across the thickness of the conducting nanolayer.

To find the surface impedance, it is convenient to use

the third equation of system (1). Integrating this equation

over z , we get

Hy(a) − Hy(0) = −4π

c

a
∫

0

jdz + i
ω

c
Ex . (52)

Taking into account the condition (5) and using the relation

between the current density and integral conductivity (21),
the expression for the surface impedance takes the form:

Z1 =
Ex

Hy

∣

∣

∣

∣

z=0

=
2ic

(ωa + 4πiσ )
. (53)

Now, we find the surface impedance using the second

equation of system (1), which describes the wave behavior

in the insulating layer:

Z2 =
Ex

Hy

∣

∣

∣

∣

z=0

= − iαc
εω

. (54)

The components Ex and Hy do not change when crossing

the
”
conductor-dielectric“ boundary. Therefore, the surface

impedances Z1 and Z2 are equal. Equating (54) and (53),
we obtain the expression for the transverse decay coefficient

of the surface wave:

α = − 2εω

(ωa + 4πiσ )
. (55)

By using the relationship (4), we will obtain an expression

for the wave vector of the surface wave:

k =

√

ω2

c2
ε +

4ε2ω2

ωa + 4πiσ 2
. (56)

We normalize the parameters k and αby the thickness

of the conducting nanolayer and write expressions (55) and

(56) through dimensionless parameters:

αa = − 2εy0

(y0 + iy2
p6)

, (57)

ka =

√

y2
0

x2
0

x2
λρ

2ε2
+

4y2
0ε

2

(y0 + iy2
p6)2

, (58)

where the following notations are introduced: ρ = v0v/c ,
y p = ωpτ0v .
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