Optical theorem and vacuum dichroism in electromagnetic fields producing pairs
Aleksandrov I. A. 1,2, Chubukov D. V. 3
1St. Petersburg State University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3ITMO University, St. Petersburg, Russia
Email: i.aleksandrov@spbu.ru, dmitrybeat@gmail.com

PDF
The relationship between the processes of photon decay into an electron-positron pair and photon emission from vacuum with pair production in an external electromagnetic field is investigated. It is known that in the case when the external field is not capable of producing particles from vacuum within the zeroth order in radiative interaction, the contribution of radiation is also zero, and the probability of photon decay in accordance with the optical theorem can be associated with the imaginary part of the second-order Feynman diagram containing a fermion loop. In this paper, the main attention is paid to the problem with unstable vacuum. It is shown that in this case the statement of the optical theorem is modified since a nonzero probability of emission with pair production must be added to the probability of photon decay. In our numerical calculations, both of these probabilities are obtained nonperturbatively with respect to the interaction with an external alternating electric field for various photon polarizations. The results of calculating the imaginary part of the one-loop diagram turned out to be in complete agreement with the optical theorem. It is also shown that the locally-constant field approximation is inapplicable in the region of low photon energies and can give a significant error in the high-energy region. The paper also analyzes the phenomenon of vacuum dichroism, i.e., the dependence of the above-described contributions on the photon polarization. Keywords: quantum electrodynamics, strong fields, nonlinear effects, dichroism, polarization tensor, birefringence.
  1. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Elsevier Butterworth-Heinemann, Oxford, 1982) V. IV. Kvantovaya elektrodinamika (Nauka, M., 1989)
  2. E. S. Fradkin, D. M. Gitman, and S. M. Shvartsman, Quantum Electrodynamics with Unstable Vacuum (Springer-Verlag, Berlin, 1991)
  3. V.I. Ritus. Trudy FIAN , 111, 5 (1979). (in Russian)
  4. A. Gonoskov, T.G. Blackburn, M. Marklund, S.S. Bulanov. Rev. Mod. Phys., 94, 045001 (2022). DOI: 10.1103/RevModPhys.94.045001
  5. A. Fedotov, A. Ilderton, F. Karbstein, B. King, D. Seipt, H. Taya, G. Torgrimsson. Phys. Rep., 1010, 1 (2023). DOI: 10.1016/j.physrep.2023.01.003
  6. S.V. Popruzhenko, A.M. Fedotov. UFN 193, 491 (2023) (in Russian). DOI: 10.3367/UFNr.2023.03.039335
  7. M. Lestinsky et al. Eur. Phys. J. Spec. Top., 225, 797 (2016). DOI: 10.1140/epjst/e2016-02643-6
  8. X. Ma et al. Nucl. Instrum. Methods Phys. Res., Sect. B 408, 169 (2017). DOI: 10.1016/j.nimb.2017.03.129
  9. G.M. Ter-Akopian, W. Greiner, I.N. Meshkov, Y.T. Oganessian, J. Reinhardt, G.V. Trubnikov. Int. J. Mod. Phys. E, 24, 1550016 (2015). DOI: 10.1142/S0218301315500160
  10. I.A. Aleksandrov, A. Di Piazza, G. Plunien, V.M. Shabaev. Phys. Rev. D, 105, 116005 (2022). DOI: 10.1103/PhysRevD.105.116005
  11. S. Bragin, S. Meuren, C.H. Keitel, A. Di Piazza. Phys. Rev. Lett., 119, 250403 (2017). DOI: 10.1103/PhysRevLett.119.250403
  12. I.A. Batalin, A.E. Shabad. Prepr. FIAN, 166 (1968) (in Russian)
  13. N.B. Narozhny. ZhETF, 55, 714 (1968) (in Russian)
  14. V.I. Ritus. Ann. Phys., 69, 555 (1972). DOI: 10.1016/0003-4916(72)90191-1
  15. S. Meuren, C.H. Keitel, A. Di Piazza. Phys. Rev. D, 88, 013007 (2013). DOI: 10.1103/PhysRevD.88.013007
  16. R.S. Scorer. Q. J. Mech. Appl. Math., 3, 107 (1950). DOI: 10.1093/qjmam/3.1.107
  17. I.A. Aleksandrov, V.M. Shabaev. ZhETF, 166, 182 (2024). DOI: 10.31857/S0044451024080042
  18. I.A. Aleksandrov, D.V. Chubukov, A.G. Tkachev, A.I. Klochai. Opt. Spectr., 132, 908 (2024) DOI: 10.61011/OS.2024.09.59194.7009-24
  19. J. Schwinger. Phys. Rev., 82, 664 (1951). DOI: 10.1103/PhysRev.82.664
  20. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel. Phys. Rev. D, 72, 085005 (2005). DOI: 10.1103/PhysRevD.72.085005
  21. A.M. Fedotov, N.B. Narozhny. Phys. Lett. A, 362, 1 (2007). DOI: 10.1016/j.physleta.2006.09.085
  22. F. Karbstein, R. Shaisultanov. Phys. Rev. D, 91, 113002 (2015). DOI: 10.1103/PhysRevD.91.113002
  23. A. Otto, B. Kampfer. Phys. Rev. D, 95, 125007 (2017). DOI: 10.1103/PhysRevD.95.125007
  24. H. Gies, F. Karbstein, C. Kohlfurst. Phys. Rev. D, 97, 036022 (2018). DOI: 10.1103/PhysRevD.97.036022
  25. I.A. Aleksandrov, G. Plunien, V.M. Shabaev. Phys. Rev. D, 100, 116003 (2019). DOI: 10.1103/PhysRevD.100.116003
  26. I.A. Aleksandrov, A.D. Panferov, S.A. Smolyansky. Phys. Rev. A, 103, 053107 (2021). DOI: 10.1103/PhysRevA.103.053107
  27. J.S. Toll. Ph.D. thesis, Princeton Univ., 1952
  28. R. Baier, P. Breitenlohner. Acta Phys. Austriaca, 25, 212 (1967)
  29. R. Baier, P. Breitenlohner. Nuovo Cimento B, 47, 117 (1967). DOI: 10.1007/BF02712312
  30. V.N. Bayer, A.I. Milstein, V.M. Strakhovenko. ZhETF, (in Russian). 69, 1893 (1975)
  31. W. Becker, H. Mitter. J. Phys. A, 8, 1638 (1975). DOI: 10.1088/0305-4470/8/10/017
  32. E.B. Aleksandrov, A.A. Anselm, A.N. Moskalev. ZhETF, 89, 1181 (1985) (in Russian)
  33. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel. Phys. Rev. Lett., 97, 083603 (2006). DOI: 10.1103/PhysRevLett.97.083603
  34. T. Heinzl, B. Liesfeld, K. U. Amthor, H. Schwoerer, R. Sauerbrey, A. Wipf. Opt. Commun., 267, 318 (2006). DOI: 10.1016/j.optcom.2006.06.053
  35. F. Karbstein, H. Gies, M. Reuter, M. Zepf. Phys. Rev. D, 92, 071301(R) (2015). DOI: 10.1103/PhysRevD.92.071301
  36. H.-P. Schlenvoigt, T. Heinzl, U. Schramm, T. E. Cowan, R. Sauerbrey. Phys. Scr., 91, 023010 (2016). DOI: 10.1088/0031-8949/91/2/023010
  37. F. Karbstein, E.A. Mosman. Phys. Rev. D, 101, 113002 (2020). DOI: 10.1103/PhysRevD.101.113002
  38. F. Karbstein, D. Ullmann, E.A. Mosman, M. Zepf. Phys. Rev. Lett., 129, 061802 (2022). DOI: 10.1103/PhysRevLett.129.061802
  39. N. Ahmadiniaz, T.E. Cowan, J. Grenzer, S. Franchino-Vinas, A. Laso Garcia, M. S vSmid, T. Toncian, M.A. Trejo, R. Schutzhold. Phys. Rev. D, 108, 076005 (2023). DOI: 10.1103/PhysRevD.108.076005

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru