Theoretical study of the influence of parameters of the amplifying and absorbing media on the dynamics of coherent mode locking in a two-section laser
Arkhipov R.M.1, Arkhipov M.V.1, Diachkova O.O.1,2, Pakhomov A.V.1,2, Rosanov N.N.1
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: arkhipovrostislav@gmail.com, mikhail.v.arkhipov@gmail.com, o.o.dyachkova@gmail.com, antpakhom@gmail.com, nnrosanov@mail.ru
A theoretical study of the influence of the parameters of the amplifying and absorbing media on the dynamics of coherent mode locking (CML) in a two-section laser is carried out. Based on analytical calculations and numerical modeling, the conditions for the formation of a stable CML regime with parameters characteristic of terahertz quantum cascade lasers (QCLs) are studied. Using the generalized area theorem, the existence and stability of the CML regime in such systems are proven. Numerical solution of nonlinear equations describing the interaction of radiation with the active and passive media made it possible to determine the key parameters affecting the CML dynamics. It is shown that the ratio of population relaxation times in the amplifying and absorbing media plays a critical role. The obtained results are important for the development of self-starting compact laser systems generating short pulses, in particular, for terahertz QCLs. Such systems are promising for use in ultrafast spectroscopy and other applications requiring stable generation of ultrashort pulses. Keywords: coherent mode locking, two-section laser, quantum cascade laser, self-induced transparency, nonlinear dynamics.
- V.V. Kozlov. Phys. Rev. A, 56, 1607 (1997)
- S.L. McCall, E.L. Hahn. Phys. Rev., 183, 457 (1969)
- L. Allen, J.H. Eberly. Optical resonance and two-level atoms (Wiley, N. Y., 1975)
- M.A. Talukder, C.R. Menyuk. Phys. Rev. A, 79, 063841 (2009)
- R. Arkhipov, M. Arkhipov, I. Babushkin. Opt. Commun., 361, 73 (2016)
- R.M. Arkhipov, M.V. Arkhipov, I. Babushkin, N.N. Rosanov. Opt. Lett., 41, 737 (2016)
- R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, N. Rosanov. Phys. Rev. A, 105, 013526 (2022)
- A. Outafat, S. Faci, E. Richalot, S. Protat, C. Algani. Opt. Quant. Electron., 54 (5), 283 (2022)
- U. Keller. Appl. Phys. B, 100, 15 (2010)
- J.C. Diels, W. Rudolph. Ultrashort laser pulse phenomena (Elsevier, 2006)
- A. Pakhomov, M. Arkhipov, N. Rosanov, R. Arkhipov. Phys. Rev. A, 108, 023506 (2023)
- A. Pakhomov, R. Arkhipov. Phys. Rev. A, 109, 033519 (2024)
- M.V. Arkhipov, A.A. Shimko, N.N. Rosanov, I. Babushkin, R.M. Arkhipov. Phys. Rev. A, 101 (1), 013803 (2020)
- R. Paiella, F. Capasso, C. Gmachl, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, H.C. Liu. Science, 290, 1739-1742 (2000)
- R. Paiella, F. Capasso, C. Gmachl, H.Y. Hwang, D.L. Sivco, A.L. Hutchinson, A.Y. Cho, H.C. Liu. Appl. Phys. Lett., 77, 169-171 (2000)
- C.Y. Wang, L. Kuznetsova, V.M. Gkortsas, L. Diehl, F.X. Kartner, M.A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C.Y. Song, S. Haffouz, Z.R. Wasilewski, H.C. Liu, F. Capasso. Opt. Express, 17, 12929-12943 (2009)
- M.A. Talukder, C.R. Menyuk. Optics Express, 22 (13), 15608-15617 (2014)
- E. Riccardi, V. Pistore, S. Kang, L. Seitner, A. De Vetter, C. Jirauschek, J. Mangeney, L. Li, A.G. Davies, E.H. Linfeld et al. Nat. Photon., 17, 1-8 (2023)
- R.M. Arkhipov, M.V. Arkhipov, O.O. Diachkova, A.V. Pakhomov, N.N. Rosanov. Opt. Spectrosc., 131 (7), 884(2023)
- R. Arkhipov, O. Diachkova, A. Pakhomov, M. Arkhipov, N. Rosanov, B. Zhmud, R. Khabibullin. Appl. Phys. B, 130 (10), 184 (2024)
- H. Choi, V.M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F.X. Kartner, T.B. Norris. Nature Photonics, 4, 706 (2010)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.