Investigation of the radiation mode composition of the multimode fiber laser based on measurement of its spectral characteristics
Iakupov F. R.1, Shaidullin R. I.2, Baranov A. I.3
1Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
2Fryazino Branch of Kotelnikov Institute of Radioelectronics RAS, Fryazino, Russia
3OOO NTO "IRE-Polus", Fryazino, Russia
Email: iakupov.fr@phystech.edu, rs-mipt@mail.ru, aBaranov@vpglaserone.ru
The paper presents a method for determining the mode composition of the output radiation of a multimode fiber laser. Since different transverse modes are reflected from a multimode fiber Bragg grating at different wavelengths, then experimental measurement of the optical spectrum of laser radiation allows to determine both the presence of certain modes and the share of optical power in each of them. An experimental study of a multimode fiber laser doped with ytterbium and erbium ions showed that it maintains from 2 to 4 transverse modes depending on the pump power, while the fiber itself supports the propagation of 17 modes. Keywords: fiber laser, multimode radiation, fiber Bragg grating, optical spectrum.
- IPG Photonics [Electronic source]. URL: https://www.ipgphotonics.com/products/lasers/industrial-cw-fiber-lasers/high-power-fiber-lasers
- RP Photonics Encyclopedia [Electronic source]. URL: https://www.rp-photonics.com/large_mode_area_fibers.html
- H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, A. Tunnermann. Opt. Express, 20, 15710-15722 (2012). DOI: 10.1364/OE.20.015710
- L. Xie, C. Zhang, Y. Liu, H. Li, Q. Chu, H. Song, W. Wu, B. Shen, M. Li, X. Feng, S. Huang, R. Tao, J. Wang, X. Zhang, H.Y. Zhu. Opt. Express, 29, 7986-7997 (2021). DOI: 10.1364/OE.415690
- S. Wielandy. Opt. Express, 15, 15402-15409 (2007). DOI: 10.1364/OE.15.015402
- M. Skorobogatiy, C. Anastassiou, S.G. Johnson, O. Weisberg, T. D. Engeness, S. A. Jacobs, R. U. Ahmad, Y. Fink. Opt. Express, 11, 2838-2847 (2003). DOI: 10.1364/OE.11.002838
- O. Shapira, A.F. Abouraddy, J.D. Joannopoulos, Y. Fink. Phys. Rev. Lett., 94, 143902 (2005). DOI: 10.1103/PhysRevLett.94.143902
- D.B.S. Soh, J. Nilsson, S. Baek, C. Codemard, Y. Jeong, V. Philippov. J. Opt. Soc. Am. A, 21, 1241-1250 (2004). DOI: 10.1364/JOSAA.21.001241
- T. Kaiser, D. Flamm, S. Schröter, M. Duparre. Opt. Express, 17, 9347-9356 (2009). DOI: 10.1364/OE.17.009347
- J.W. Nicholson, A.D. Yablon, S. Ramachandran, S. Ghalmi. Opt. Express, 16 (10), 7233-7243 (2008). DOI: 10.1364/oe.16.007233
- H.-J. Otto, F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, A. Tunnermann. J. Light. Technol., 31 (8), 1295-1299 (2013). DOI: 10.1109/JLT.2013.2242430
- F.R. Iakupov, M.A. Chernikov, A.I. Baranov, R.I. Shaidullin. Appl. Phys. B, 130, 84 (2024). DOI: 10.1007/s00340-024-08221-0
- T. Erdogan. J. Light. Technol., 15 (8), 1277-1294 (1997). DOI: 10.1109/50.618322
- C. Lu, Y. Cui. J. Light. Technol., 24 (1), 598-604 (2006). DOI: 10.1109/JLT.2005.859841
- F.R. Iakupov, F.V. Zakharov, A.I. Baranov, R.I. Shaidullin. Appl. Phys. B, 131, 12 (2025). DOI: 10.1007/s00340-024-08373-z
- F. Stutzki, C. Jauregui, J. Limpert, A. Tunnermann. Electron. Lett., 47 (4), 274 (2011). DOI: 10.1049/el.2010.3255
- F. Stutzki, C. Jauregui, C. Voigtlander, J. Thomas, S. Nolte, J. Limpert, A. Tunnermann. In: OSA Technical Digest of Optical Fiber Communication Conf. (Optica Publishing Group, 2010), p. OTuJ2. DOI: 10.1364/OFC.2010.OTuJ2
- P. Lu, A. Wang, S. Soker, Y. Xu. Opt. Lett., 40, 3488-3491 (2015). DOI: 10.1364/OL.40.003488
- A.B. Grudinin, D.N. Payne, P.W. Turner, L.J.A. Nilsson, M.N. Zervas, M. Ibsen, M.K. Durkin. U.S. patent 8743454B2 (June 3, 2004).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.