Hydrogen defects in diamonds: research and definition of content of N3VH content using secondary ion mass spectrometry and infrared spectroscopy
Shilobreeva S.N. 1, Khmelnitsky R. A. 2, Ber B. Ya. 3, Kazantsev D. Yu. 3, Dravin V. A.2, Prokofiev V. Yu.4, Tarelkin S. A. 5, Tokarev M. V. 3
1V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
3Ioffe Institute, St. Petersburg, Russia
4Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences, Moscow, Russia
5"TECHNOLOGICAL INSTITUTE FOR SUPERHARD AND NOVEL CARBON MATERIALS OF NATIONAL RESEARCH CENTRE "KURCHATOV INSTITUTE", Troitsk, Moscow, Russia
Email: shilobre@mail.ru, khmelnitskyra@lebedev.ru, boris.ber@mail.ioffe.ru, dukazantsev@mail.ioffe.ru, tarelkinsa@yandex.ru, mvtokarev@mail.ioffe.ru

PDF
The concentration of hydrogen and N3VH defects in natural diamonds was determined using secondary ion mass spectrometry (SIMS) and infrared (IR) spectroscopy. A method for quantitative analysis of hydrogen was proposed based on the creation of reference samples directly in the studied samples by implantation of hydrogen. A linear correlation was established between the IR absorption of the paintwork material at 3107 cm-1 and the hydrogen concentration determined by SIMS: C_H=S*N3VHI3107, where S*N3VH=(2.15± 1.44)· 1017 cm-1. A detailed characteristics of main hydrogen defects in diamonds is given. Keywords: IR spectroscopy, secondary ion mass spectrometry, diamond, hydrogen, N3VH defects.
  1. P.R.W. Hudson, I.S.T. Tsong. J. Mater. Sci., 12, 2389 (1977). DOI: 10.1007/BF00553924
  2. B. Rondeau, E. Fritsch, M. Guiraud, J.-P. Chalain, F. Notari. Diam. Relat. Mater., 13, 1658, (2004). DOI: 10.1016/j.diamond.2004.02.002
  3. C.H. van der Bogert, C.P. Smith, T. Hainschwang, S.F. McClure. GemsGemol., 45 (1), 20 (2009). DOI: 10.5741/GEMS.45.1.20
  4. W. Huang, P. Ni, T. Shui, G. Shi, G. Luth. GemsGemol., 55, 398 (2019). DOI: 10.5741/GEMS.55.3.398
  5. T. Stachel, R.W. Luth. Lithos, 220 (2015). DOI: 10.1016/j.lithos.2015.01.028
  6. C.E. Melton, A.A. Giardini. Am. Miner., 59, 775 (1974)
  7. E.M. Smith In: Fluid and Melt Inclusions: Applications to Geologic Processes, ed. by P. LecumberriSanchez, M. Steele-MacInnis, D. Kontak (Mineralogical Association of Canada, 2020). V. 49. P. 1. DOI: .10.3749/9780921294719.ch05
  8. E.M. Smith, M.Y. Krebs, P.-T. Genzel, F.E. Brenker. Rev. Miner. Geochem., 88, 451 (2022). DOI: 10.2138/rmg.2022.88.08
  9. J.P.E. Sellschop, S.H. Connell, C.C.P. Madiba, E. Sideras-Haddad, M.C. Stemmet, K. Bharuth-Ram, H. Appel, W. Kundig, B. Patterson, E. Holzschuh. Nucl. Instrum. Meth. Phys. Res., 68, 133 (1992). DOI: 10.1016/0168-583X(92)96064-6
  10. B.I. Green, A.T. Collins, C.M. Breeding. Rev. Miner. Geochem., 88, 637 (2022). DOI: 10.2138/rmg.2022.88.12
  11. A.A. Shiryaev, D. Grambole, A. Rivera, F. Herrmann. Diam. Relat. Mater., 16, 1479 (2007). DOI: 10.1016/j.diamond.2006.12.005
  12. C. Haug, H. Gartner, J. Portmann, R. Samlenski, C. Wild, R. Brenn. Diam. Relat. Mater., 10, 411 (2001). DOI: 10.1016/S0925-9635(00)00372-1
  13. M.I. Heggie, S. Jenkins, C.P. Ewels, P. Jemmer, R. Jones, P.R. Briddon. J. Phys.: Condens. Mater., 12, 10263 (2000). DOI: org/10.1088/0953-8984/12/49/327
  14. M.C. Day, M.C. Jollands, D. Novella, F. Nestola, R. Dovesi, M.G. Pamato. Diam. Relat. Mater., 143, 110866 (2024). DOI: 10.1016/j.diamond.2024.110866
  15. G. Woods, A.T. Collins. J. Phys. Chem. Solids, 44, 471 (1983). DOI: 10.1016/0022-3697(83)90078-1
  16. W.A. Runciman, T. Carter. Solid State Commun., 9, 315 (1971). DOI: 10.1016/00381098(71)90001-9
  17. E. Fritsch, T. Hainschwang, L. Massi, B. Rondeau. New Diam. Front. Carbon Technol., 17, 63 (2007)
  18. F. Fuchs, C. Wild, K. Schwarz, W. Muller-Sebert, P. Koidl. Appl. Phys. Lett., 66 (2), 177 (1995). DOI: 10.1063/1.113126
  19. J.O. Wood. An Elusive Impurity: Studying Hydrogen in Natural Diamonds. Thesis. (The University of Bristol, 2020)
  20. M.N.R. Ashfold, L.P. Goss, B.L. Green, P.W. May, M.E. Newton, C.V. Peaker. Chem. Rev., 12, 1010 (2020)
  21. In: Impurities and defects in group IV elements, IV-IV and III-V compounds. Part a: Group IV elements. Ed. by O. Madelung, U. Rossler, M. Schulz (Landolt-Bornstein --- Group III Cond. Matt. book series , 2002). V. 41A2a. P. 211
  22. S. Liggins. Identication of point defects in treated single crystal diamond. PhD thesis (The University of Warwick, 2010)
  23. J.P. Goss. J. Phys.: Condens. Matter, 15, R551 (2003). DOI: 10.1088/0953-8984/15/17/201
  24. J.P. Goss, P.R. Briddon, V. Hill, R. Jones, M.J. Rayson. J. Phys.: Condens. Matter, 26, 145801 (2014). DOI: 10.1088/0953-8984/26/14/145801
  25. I. Kiflawi, D. Fisher, H. Kanda. Diam. Relat. Mater. 5, 1516-1518 (1996). DOI: 10.1016/S09259635(96)00568-7
  26. C. Haug, H. Gartner, J. Portmann, R. Samlenski, C. Wild, R. Brenn. Diam. Relat. Mater., 10, 411 (2001). DOI: 10.1016/S0925-9635(00)00372-1
  27. C.B. Hartland. A Study of Point Defects in CVD Diamond Using Electron Paramagnetic Resonance and Optical Spectroscopy. Thesis (The University of Warwick, 2014)
  28. C. Glover, M.E. Newton, P.M. Martineau, S. Quinn, D.J. Twitchen. Phys. Rev. Lett., 90, 185507 (2003). DOI: 10.1103/PhysRevLett.90.185507
  29. B.L. Cann. Magnetic resonance studies of point defects in diamond. Thesis (University of Warwick, 2009)
  30. D.J.L. Coxon, M. Staniforth, B.G.E. Greenough, J.P. Goss, M. Monti, J.L. Hughes, V.G. Stavros, M.E. Newton. J. Phys. Chem. Lett., 11, 6677 (2020). DOI: 10.1021/acs.jpclett.0c01806
  31. D.J.L. Coxon. A study of the relaxation dynamics of local vibrational modes associated with hydrogen in diamond. Thesis (University of Warwick, 2022)
  32. F.V. Kaminsky, S.N. Shilobreeva, B.Ya. Ber, D.Yu. Kazantsev. Doklady RAN. Nauki o Zemle 494 (1), 43 (2020) (in Russian). DOI: 10.31857/S2686739720090091
  33. F.V. Kaminsky, V.B. Polyakov, B.Ya. Ber, D.Yu. Kazantsev, G.K. Khachatryan, S.N. Shilobreeva. Chem. Geol., 661, 122185 (2024). DOI: 10.1016/j.chemgeo.2024.122185
  34. F. De Weerdt, A.T. Collins. Diam. Relat. Mater., 15, 593 (2006). DOI: 10.1016/j.diamond.2006.01.005
  35. V.T. Cherepin. Ionnyj mikrozondovyj analiz (Naukova Dumka, Kyiv, 1992)
  36. D. Howell, C.J. O'Neill, K.J. Grant, W.L. Griffin, N.J. Pearson, S.Y. O'Reilly. Diam. Relat. Mater., 29, 29 (2012). DOI: 10.1016/j.diamond.2012.06.003
  37. C. Saguy, C. Cytermann, B. Fizgeer, V. Richter, Y. Avigal, N. Moriya, R. Kalish, B. Mathieu, A. Deneuville. Diam. Relat. Mater., 12, 623 (2003). DOI: 10.1016/S0925-9635(02)00403-X
  38. R.A. Khmelnitskiy, E.A. Zavedeev, A.V. Khomich, A.V. Gooskov, A.A. Gippius. Vacuum, 78, 273 (2005). DOI: 10.1016/j.vacuum.2005.01.038
  39. F.A. Stevie. Secondary Ion Mass Spectrometry. Applications for Depth Profiling and Surface Characterization (Momentum Press, N. Y., 2016)
  40. R.G. Wilson, F.A. Stevie, C.W. Magee. Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis (Wiley, N. Y., 1989)
  41. International Standard ISO 18114:2003(E). Surface Chemical Analysis --- Secondary-Ion Mass Spectrometry --- Determination of Relative Sensitivity Factors from Ion Implanted Reference Materials (2003)
  42. J.P. Goss, R. Jones, M.I. Heggie, C.P. Ewels, P.R. Briddon, S. Oberg. Phys. Rev. B, 65, 115207 (2002). DOI: 10.1103/PhysRevB.65.115207
  43. E.E. Chen, M. Stavola, W.B. Fowler, J.A. Zhou. Phys. Rev. Lett., 88, 245503 (2002). DOI: 10.1557/PROC-813-H6.1

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru