Hydrogen defects in diamonds: research and definition of content of N3VH content using secondary ion mass spectrometry and infrared spectroscopy
Shilobreeva S.N.
1, Khmelnitsky R. A.
2, Ber B. Ya.
3, Kazantsev D. Yu.
3, Dravin V. A.
2, Prokofiev V. Yu.
4, Tarelkin S. A.
5, Tokarev M. V.
31V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
3Ioffe Institute, St. Petersburg, Russia
4Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences, Moscow, Russia
5"TECHNOLOGICAL INSTITUTE FOR SUPERHARD AND NOVEL CARBON MATERIALS OF NATIONAL RESEARCH CENTRE "KURCHATOV INSTITUTE", Troitsk, Moscow, Russia
Email: shilobre@mail.ru, khmelnitskyra@lebedev.ru, boris.ber@mail.ioffe.ru, dukazantsev@mail.ioffe.ru, tarelkinsa@yandex.ru, mvtokarev@mail.ioffe.ru
The concentration of hydrogen and N3VH defects in natural diamonds was determined using secondary ion mass spectrometry (SIMS) and infrared (IR) spectroscopy. A method for quantitative analysis of hydrogen was proposed based on the creation of reference samples directly in the studied samples by implantation of hydrogen. A linear correlation was established between the IR absorption of the paintwork material at 3107 cm-1 and the hydrogen concentration determined by SIMS: C_H=S*N3VHI3107, where S*N3VH=(2.15± 1.44)· 1017 cm-1. A detailed characteristics of main hydrogen defects in diamonds is given. Keywords: IR spectroscopy, secondary ion mass spectrometry, diamond, hydrogen, N3VH defects.
- P.R.W. Hudson, I.S.T. Tsong. J. Mater. Sci., 12, 2389 (1977). DOI: 10.1007/BF00553924
- B. Rondeau, E. Fritsch, M. Guiraud, J.-P. Chalain, F. Notari. Diam. Relat. Mater., 13, 1658, (2004). DOI: 10.1016/j.diamond.2004.02.002
- C.H. van der Bogert, C.P. Smith, T. Hainschwang, S.F. McClure. GemsGemol., 45 (1), 20 (2009). DOI: 10.5741/GEMS.45.1.20
- W. Huang, P. Ni, T. Shui, G. Shi, G. Luth. GemsGemol., 55, 398 (2019). DOI: 10.5741/GEMS.55.3.398
- T. Stachel, R.W. Luth. Lithos, 220 (2015). DOI: 10.1016/j.lithos.2015.01.028
- C.E. Melton, A.A. Giardini. Am. Miner., 59, 775 (1974)
- E.M. Smith In: Fluid and Melt Inclusions: Applications to Geologic Processes, ed. by P. LecumberriSanchez, M. Steele-MacInnis, D. Kontak (Mineralogical Association of Canada, 2020). V. 49. P. 1. DOI: .10.3749/9780921294719.ch05
- E.M. Smith, M.Y. Krebs, P.-T. Genzel, F.E. Brenker. Rev. Miner. Geochem., 88, 451 (2022). DOI: 10.2138/rmg.2022.88.08
- J.P.E. Sellschop, S.H. Connell, C.C.P. Madiba, E. Sideras-Haddad, M.C. Stemmet, K. Bharuth-Ram, H. Appel, W. Kundig, B. Patterson, E. Holzschuh. Nucl. Instrum. Meth. Phys. Res., 68, 133 (1992). DOI: 10.1016/0168-583X(92)96064-6
- B.I. Green, A.T. Collins, C.M. Breeding. Rev. Miner. Geochem., 88, 637 (2022). DOI: 10.2138/rmg.2022.88.12
- A.A. Shiryaev, D. Grambole, A. Rivera, F. Herrmann. Diam. Relat. Mater., 16, 1479 (2007). DOI: 10.1016/j.diamond.2006.12.005
- C. Haug, H. Gartner, J. Portmann, R. Samlenski, C. Wild, R. Brenn. Diam. Relat. Mater., 10, 411 (2001). DOI: 10.1016/S0925-9635(00)00372-1
- M.I. Heggie, S. Jenkins, C.P. Ewels, P. Jemmer, R. Jones, P.R. Briddon. J. Phys.: Condens. Mater., 12, 10263 (2000). DOI: org/10.1088/0953-8984/12/49/327
- M.C. Day, M.C. Jollands, D. Novella, F. Nestola, R. Dovesi, M.G. Pamato. Diam. Relat. Mater., 143, 110866 (2024). DOI: 10.1016/j.diamond.2024.110866
- G. Woods, A.T. Collins. J. Phys. Chem. Solids, 44, 471 (1983). DOI: 10.1016/0022-3697(83)90078-1
- W.A. Runciman, T. Carter. Solid State Commun., 9, 315 (1971). DOI: 10.1016/00381098(71)90001-9
- E. Fritsch, T. Hainschwang, L. Massi, B. Rondeau. New Diam. Front. Carbon Technol., 17, 63 (2007)
- F. Fuchs, C. Wild, K. Schwarz, W. Muller-Sebert, P. Koidl. Appl. Phys. Lett., 66 (2), 177 (1995). DOI: 10.1063/1.113126
- J.O. Wood. An Elusive Impurity: Studying Hydrogen in Natural Diamonds. Thesis. (The University of Bristol, 2020)
- M.N.R. Ashfold, L.P. Goss, B.L. Green, P.W. May, M.E. Newton, C.V. Peaker. Chem. Rev., 12, 1010 (2020)
- In: Impurities and defects in group IV elements, IV-IV and III-V compounds. Part a: Group IV elements. Ed. by O. Madelung, U. Rossler, M. Schulz (Landolt-Bornstein --- Group III Cond. Matt. book series , 2002). V. 41A2a. P. 211
- S. Liggins. Identication of point defects in treated single crystal diamond. PhD thesis (The University of Warwick, 2010)
- J.P. Goss. J. Phys.: Condens. Matter, 15, R551 (2003). DOI: 10.1088/0953-8984/15/17/201
- J.P. Goss, P.R. Briddon, V. Hill, R. Jones, M.J. Rayson. J. Phys.: Condens. Matter, 26, 145801 (2014). DOI: 10.1088/0953-8984/26/14/145801
- I. Kiflawi, D. Fisher, H. Kanda. Diam. Relat. Mater. 5, 1516-1518 (1996). DOI: 10.1016/S09259635(96)00568-7
- C. Haug, H. Gartner, J. Portmann, R. Samlenski, C. Wild, R. Brenn. Diam. Relat. Mater., 10, 411 (2001). DOI: 10.1016/S0925-9635(00)00372-1
- C.B. Hartland. A Study of Point Defects in CVD Diamond Using Electron Paramagnetic Resonance and Optical Spectroscopy. Thesis (The University of Warwick, 2014)
- C. Glover, M.E. Newton, P.M. Martineau, S. Quinn, D.J. Twitchen. Phys. Rev. Lett., 90, 185507 (2003). DOI: 10.1103/PhysRevLett.90.185507
- B.L. Cann. Magnetic resonance studies of point defects in diamond. Thesis (University of Warwick, 2009)
- D.J.L. Coxon, M. Staniforth, B.G.E. Greenough, J.P. Goss, M. Monti, J.L. Hughes, V.G. Stavros, M.E. Newton. J. Phys. Chem. Lett., 11, 6677 (2020). DOI: 10.1021/acs.jpclett.0c01806
- D.J.L. Coxon. A study of the relaxation dynamics of local vibrational modes associated with hydrogen in diamond. Thesis (University of Warwick, 2022)
- F.V. Kaminsky, S.N. Shilobreeva, B.Ya. Ber, D.Yu. Kazantsev. Doklady RAN. Nauki o Zemle 494 (1), 43 (2020) (in Russian). DOI: 10.31857/S2686739720090091
- F.V. Kaminsky, V.B. Polyakov, B.Ya. Ber, D.Yu. Kazantsev, G.K. Khachatryan, S.N. Shilobreeva. Chem. Geol., 661, 122185 (2024). DOI: 10.1016/j.chemgeo.2024.122185
- F. De Weerdt, A.T. Collins. Diam. Relat. Mater., 15, 593 (2006). DOI: 10.1016/j.diamond.2006.01.005
- V.T. Cherepin. Ionnyj mikrozondovyj analiz (Naukova Dumka, Kyiv, 1992)
- D. Howell, C.J. O'Neill, K.J. Grant, W.L. Griffin, N.J. Pearson, S.Y. O'Reilly. Diam. Relat. Mater., 29, 29 (2012). DOI: 10.1016/j.diamond.2012.06.003
- C. Saguy, C. Cytermann, B. Fizgeer, V. Richter, Y. Avigal, N. Moriya, R. Kalish, B. Mathieu, A. Deneuville. Diam. Relat. Mater., 12, 623 (2003). DOI: 10.1016/S0925-9635(02)00403-X
- R.A. Khmelnitskiy, E.A. Zavedeev, A.V. Khomich, A.V. Gooskov, A.A. Gippius. Vacuum, 78, 273 (2005). DOI: 10.1016/j.vacuum.2005.01.038
- F.A. Stevie. Secondary Ion Mass Spectrometry. Applications for Depth Profiling and Surface Characterization (Momentum Press, N. Y., 2016)
- R.G. Wilson, F.A. Stevie, C.W. Magee. Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis (Wiley, N. Y., 1989)
- International Standard ISO 18114:2003(E). Surface Chemical Analysis --- Secondary-Ion Mass Spectrometry --- Determination of Relative Sensitivity Factors from Ion Implanted Reference Materials (2003)
- J.P. Goss, R. Jones, M.I. Heggie, C.P. Ewels, P.R. Briddon, S. Oberg. Phys. Rev. B, 65, 115207 (2002). DOI: 10.1103/PhysRevB.65.115207
- E.E. Chen, M. Stavola, W.B. Fowler, J.A. Zhou. Phys. Rev. Lett., 88, 245503 (2002). DOI: 10.1557/PROC-813-H6.1
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.