Modeling the spectral shift of the higher-frequency Q-branch of the ν1/2ν2 CO2 Fermi dyad using spherically symmetric potentials
Valeev A. A. 1
1Volgograd State Technical University, Volgograd, Russia
Email: antonvaleev@gmail.com

PDF
In this work is determined the type of spherically symmetric interaction potential of molecules and its parameters to reproduce the dependences of pressure and configurational internal energy of carbon dioxide on density and temperature. Using the change in potential during vibrational excitation, a model of experimental dependences of the spectral shift of the higher-frequency Q-branch of the ν1/2ν2 Fermi dyad on density is constructed. Keywords: carbon dioxide, CARS, spectral shift, molecular dynamics, Mie potential.
  1. E. Beckman. Science, 271 (5249), 613-614 (1996). DOI: 10.1126/science.271.5249.613
  2. J. Kaiser. Science, 274 (5295), 2013 (1996). DOI: 10.1126/science.274.5295.2013
  3. V.I. Gerasimova, Yu.S. Zavorotny, A.O. Rybaltovskii, A.A. Antoshkov, V.I. Sokolov, E.V. Troitskaya, V.N. Bagratashvili. Russ. J. Phys. Chem. B, 4 (7), 1149-1157 (2010). DOI: 10.1134/S1990793110070158
  4. D.M. Sublett Jr., E. Sendula, H. Lamadrid, M. Steele-MacInnis, G. Spiekermann, R.C. Burruss, R.J. Bodnar. J. Raman Spectrosc., 51, 555-568 (2020). DOI: 10.1002/jrs.5805
  5. J. Yamamoto, Y. Hagiwara. Appl. Optics, 63 (5), 1402-1410 (2024). DOI: 10.1364/AO.507939
  6. M.I. Cabaco, S. Longelin, Y. Danten, M. Besnard. J. Chem. Phys., 128 (7), 074507 (2008). DOI: 10.1063/1.2833493
  7. G.A. Mel'nikov, V.N. Verveiko, Yu.F. Melikhov, M.V. Verveiko, A.V. Polyanskii. Herald of the Bauman Moscow State Technical University, Series Natural Sciences, (3), 108-123 (2011)
  8. N.M. Asharchuk, E.I. Mareev. Russ. J. Phys. Chem. B, 18 (7), 1729-1736 (2024). DOI: 10.1134/S1990793124701021
  9. V.G. Arakcheev, V.N. Bagratashvili, A.A. Valeev, V.B. Morozov, V.K. Popov. Russ. J. Phys. Chem. B, 4 (8), 1245-1251 (2010). DOI: 10.1134/S1990793110080117
  10. C. Avendano, T. Lafi tte, A. Galindo, C.S. Adjiman, G. Jackson, E.A. Muller. J. Phys. Chem. B, 115 (38), 11154-11169 (2011). DOI: 10.1021/jp204908d
  11. J.M. Caillol. J. Chem. Phys., 109, 4885 (1998). DOI: 10.1063/1.477099
  12. W. Dusschek, R. Kleinrahm, W. Wagner. J. Chem. Thermodynamics, 22 (9), 841-864 (1990). DOI: 10.1016/0021-9614(90)90173-N
  13. StataCorp. 2023. StataNow 18 help for margins. College Station, TX: Stata Press [Electronic source]. URL: https://www.stata.com/help.cgi?margins
  14. J. Kolafa, I. Nezbeda. Fluid Phase Equilib., 100, 1-34 (1994). DOI: 10.1016/0378-3812(94)80001-4
  15. R. Span, W. Wagner. J. Phys. Chem. Ref. Data, 25 (6), 1509-1596 (1996). DOI: 10.1063/1.555991
  16. Y. Kim. J. Mech. Sci. Technol., 21, 799-803 (2007). DOI: 10.1007/BF02916358
  17. N.S. Ramrattan, C. Avendano, E.A. Muller, A. Galindo. Mol. Phys., 113 (9-10), 932-947 (2015). DOI: 10.1080/00268976.2015.1025112

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru