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Modeling the spectral shift of the higher-frequency Q-branch

of the ν1/2ν2 CO2 Fermi dyad using spherically symmetric potentials
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In this work is determined the type of spherically symmetric interaction potential of molecules and its parameters

to reproduce the dependences of pressure and configurational internal energy of carbon dioxide on density and

temperature. Using the change in potential during vibrational excitation, a model of experimental dependences of

the spectral shift of the higher-frequency Q-branch of the ν1/2ν2 Fermi dyad on density is constructed.
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Introduction

Carbon dioxide takes part in many processes on Earth

and other planets. It’s playing a key role in forming a

planet’s climate. Definitely, one can’t ignore such an actual

problem as global warming. On the other hand, the applied

significance of this substance is also considerable. It is

difficult to overestimate the role it plays in medicine and

industries such as food and perfumery. Carbon dioxide in

liquid and supercritical states is used for extraction [1,2]
and impregnation [3]. Spontaneous Raman spectroscopy

and coherent anti-Stokes Raman scattering spectroscopy

(CARS) enable inexpensive and rapid analysis of thermody-

namic state and chemical composition. The determination

of CO2 density via measurement of the frequency shifts

of Q-branches of the ν1/2ν2 Fermi dyad has already been

achieved [4,5]. One of the key aspects of the correct

operation of such devices lies in accounting for the fact that

the dependence of frequency shift on density across a wide

density range generally does not follow a linear relationship

due to several effects. Among these is the local density

augmentation effect, which manifests in the effective average

density in the vicinity of a molecule being higher than

the overall average density of the substance, particularly

near the critical point. Local density augmentation begins

occurring even at relatively low densities due to the

formation of transient dimers [6], which can be considered

the smallest possible clusters [7]. As the critical point is

approached, cluster sizes increase.

Modeling the dependence of ν1/2ν2 Fermi dyad fre-

quencies on density using molecular dynamics methods

has already been performed in [8]. In the present study,

an upside-down approach will be employed: based on

known dependencies [4,9] of frequency on density of

1388 cm−1 the higher-frequency Q-branch, the change in

the effective interaction potential between two molecules

upon vibrational excitation of one of them will be estimated.

To reduce the number of parameters to be determined,

spherically symmetric intermolecular interaction potentials

were chosen. The potential parameters must ensure

agreement with experimental data (available as empirical

equations) of certain macroscopic fluid characteristics.

Determination of the potential and its
parameters

The most widely recognized among spherically symmet-

ric intermolecular potentials is the Lennard-Jones potential,

depending on only two parameters:

u(r) = 4ε

[(

σ

r

)12

−

(

σ

r

)6]

.

A difficulty arises in that no single set of these parameters

exists for CO2 (see Table 1 in [10]). Parameters are

typically selected to optimally suit the specific task. Since

the experimental data considered in this work relate to

temperatures near the critical point, parameters for the

current task will be selected such that critical temper-

ature and density match experimental values. Critical

values of reduced thermodynamic quantities T ∗ = kBT/ε,
ρ∗ = ρσ 3/M, P∗ = Pσ 3/ε for a model fluid composed of

particles interacting pairwise via the Lennard-Jones potential

are given in [11]: T ∗ = 1.326, ρ∗ = 0.316, P∗ = 0.111.

Here T , ρ, P , kB are temperature, density, pressure, and

the Boltzmann constant respectively, ε, σ are Lennard-Jones

potential parameters, and M = 44.010 · 10−3 kg/mol is the

molar mass of carbon dioxide. From the values of critical

temperature and density, both parameters are calculated

as follows: ε = 229.3567K · kB , σ = 0.3668915 nm. For

model validation, the critical pressure is obtained using

P∗ = 0.111, yielding: P = 0.111ε/σ 3 = 7.12MPa, which

compares reasonably well with the experimentally estab-

lished value [12]: Pc = 7.3773MPa. Prior to using the

594



Modeling the spectral shift of the higher-frequency Q-branch of the ν1/2ν2 CO2 Fermi dyad... 595

model, its capacity to reproduce pressure across a wide

density range at 306.15K (33 ◦C) was tested. Rather

than plotting pressure itself, a related quantity called semi-

elasticity [13] of specific internal energy with respect

to σwas computed:

3

(

MP
Rρ

− T

)

=
1

kB

〈

∂u
∂ ln σ

〉

, (1)

where M is the molar mass of CO2, R is the universal gas

constant, and < u > — denotes the average intermolecular

potential energy per molecule. The calculation results

within the Lennard-Jones model are shown in Figure 1, the

former utilizing the equation of state from [14]. Molecular

dynamics simulations were also performed. The number of

molecules was set to 2048. Periodic boundary conditions

were applied. Forces and potentials were truncated beyond

5σ . Integration of mechanical equations employed a hybrid

NVT/NVE scheme: initially, particle count, volume, and

temperature were fixed, with temperature maintained via ki-

netic energy monitoring; subsequently, temperature control

was disabled, allowing the system to evolve under constant

energy for a certain period, at the final stage of which

necessary characteristics were accumulated to compute

average values. The averaging time was predominantly 3 ps,

except for two density values (545 and 900 kg/m3), where

it was extended to 6 and 4.2 ps respectively to minimize

deviation of average temperature from 33 ◦C. Simulation

results shown in Figure 1 exhibit significant scatter and

upward deviation near the critical density. Comparing semi-

elasticity (1) modeling results with those obtained via a

high-accuracy empirical equation of state [15] (Figure 1),
the model demonstrates satisfactory pressure prediction

capability. Beyond pressure agreement, (configurational)
internal energy must also align. Figure 2 displays plots

of configuration internal energy per molecule (divided by

kB) versus density. Included are results from the Lennard-

Jones model equation of state [14] and molecular dynamics

simulations. While computational and simulation results

coincide well, they noticeably differ from those obtained via

a reference empirical equation of state [16], also presented

in Figure 2. Regrettably, tuning ε and σ parameters fails to

simultaneously align both pressure and internal energy with

the experimental values.

To eliminate this discrepancy, the Mie potential (equa-
tion (2) in [10]) was considered as a prospective candidate:

u(r) =
λr

λr − λa

(

λr

λa

)

λa
λr −λa

ε

[(

σ

r

)λr

−

(

σ

r

)λa
]

.

This potential includes two additional parameters beyond

ε and σ : λr , λa . When they are set to 12 and 6

respectively, it reduces to the Lennard-Jones potential. [10]
justifies applying this potential for carbon dioxide due

to complex molecular interactions, including significant

quadrupole-quadrupole contributions. Authors of [10]
developed a SAFT-VR equation of state for such a fluid

(Mie fluid), enabling computation of its properties through
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Figure 1. Dependence of internal energy semi-elasticity with

respect to σ on density at 33 ◦C. Dashed and dotted lines represent

calculation results using equations of state for Lennard-Jones and

Mie potentials respectively. Molecular dynamics simulation results

for these potentials are shown as circles and squares. The solid line

indicates values obtained via the high-accuracy empirical equation

of state.
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Figure 2. Dependence of < u > /kB on ρ at 33 ◦C. Dashed and

dotted lines correspond to calculation results using equations of

state for Lennard-Jones and Mie potentials. Molecular dynamics

simulation results for these potentials are shown as circles and

squares. The solid line represents values from the high-accuracy

empirical equation of state. The dash-dot line and triangles show

calculation results via equation of state and molecular dynamics

for the Mie potential with parameters from [10].

argument values substitution into approximate equations.

They also determined Mie potential parameters by fitting

SAFT-VR equations to experimental data on saturated vapor

pressure and coexisting liquid-phase density of CO2 over

a temperature range from the triple point to T/Tc = 0.9,

where Tc ≈ 304.1K (31 ◦C) [12] is the critical temperature.

This data selection differs somewhat from the 22−50 ◦C

temperature range of our experimental dependencies, moti-
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vated by reduced SAFT-VR model accuracy near the critical

point. Parameters from [10] were used with the SAFT-VR

model to obtain configuration internal energy dependence

on density at 33 ◦C (Fig. 2), showing significantly improved

agreement with generalized experimental data. Corre-

sponding molecular dynamics results displayed even better

agreement at the same parameter values. To further improve

correspondence, this work similarly approximated available

through the empirical equation experimental data using the

SAFT-VR model for the Mie potential. Unlike [10], the

maximum temperature during phase equilibrium data fitting

was set close to critical 304K. Data from the 33 ◦C isotherm

were also included. During this procedure, the configuration

internal energy was also fitted. As a result, the follow-

ing parameter values were obtained: ε = 434.98K · kB ,

σ = 0.379272 nm, λr = 20.1068, λa = 9.11394. These

parameters were used to compute dependencies of internal

energy semi-elasticity with respect to σ and configuration

internal energy on density via SAFT-VR equations. Results

appear in Figures 1 and 2 respectively, alongside molec-

ular dynamics simulation results with 6 ps averaging time.

Noticeably, deviations from experimental data decreased.

Some discrepancy remains near critical density in Figure

1, possibly arising when correlation length approaches or

exceeds simulation cell dimensions. The critical temperature

of the Mie-potential fluid at these parameters is 299.5 K [17],
which may be considered agreeing with its experimental

value in the context of the problem.

It is worth pointing out that the obtained potential

parameters should be regarded as effective. They must not

be used outside context, e.g., for determining long-range

molecular interactions. However, they remain applicable

for simulating moderately dense systems via molecular

dynamics, Monte Carlo, and similar methods.

Change in excited molecule potential

Assume the variation δu(r) of the interaction potential

between two molecules due to vibrational excitation of one

of them is small. The corresponding change in average

interaction energy of such a molecule with others in the

ground vibrational state becomes:

1 < u >= n

∞
∫

0

F(r)δu(r)4πr2dr,

where n is molecular concentration, F(r) is the pair

correlation function, and r — is the distance between

molecular centers. This energy change is responsible for

the spectral frequency shift.

Since u(r) here represents the Mie potential, its first-order

variation is expressed through parameter changes:

δu(r) =
∂u(r)

∂ε
1ε +

∂u(r)

∂σ
1σ +

∂u(r)

∂λr
1λr +

∂u(r)

∂λa
1λa .
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Figure 3. Dependencies of averaged quantities on density at

33 ◦C: < ∂u/∂ ln ε > /kB (solid line), < ∂u/∂ ln σ > /kB (dashed
line), < ∂u/∂ ln λr > /kB (circles), < ∂u/∂ ln λa > /kB (triangles).
Quadratic approximations of the latter two are shown with dotted

and dash-dot lines.

Parameters ε and σ are small in SI units. Therefore, for

convenience, δu(r) is expressed through relative parameter

changes: 1ε/ε ≈ 1 ln ε, 1σ/σ ≈ 1 lnσ , 1λr/λr ≈ 1 ln λr ,

1λa/λa ≈ 1 ln λa :

δu(r) =
∂u

∂ ln ε
1 ln ε +

∂u
∂ ln σ

1 lnσ

+
∂u

∂ ln λr
1 ln λr +

∂u
∂ ln λa

1 ln λa .

It’s worth noting the first term can be replaced by u1 ln ε.

After averaging:

1 < u >=2 < u > 1 ln ε +

〈

∂u
∂ ln σ

〉

1 lnσ

+

〈

∂u
∂ ln λr

〉

1 ln λr +

〈

∂u
∂ ln λa

〉

1 ln λa .

The factor of 2 arises from the absence of 1/2 coefficient in

1 < u > versus its presence in < u >:

< u >=
n
2

∞
∫

0

F(r)u(r)4πr2dr.

The high-accuracy empirical equation of state-derived de-

pendence of < ∂u/∂ ln ε > /kB = 2 < u > /kB on den-

sity at t = 33 ◦C appears in Fig. 3. The coefficient

< ∂u/∂ ln σ >, in the second term, as mentioned in equa-

tion (1), relates to pressure (twice the < ∂u/∂ lnσ >value

in that equation due to the above reason), also obtained

via empirical equation. Dependence of < ∂u/∂ ln σ > /kB

on density is also plotted along with other averages,

< ∂u/∂ ln λr > /kB and < ∂u/∂ ln λa > /kB , found using

molecular dynamics for 12 density values evenly distributed

in the range corresponding to the experimental results and
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ensuring the model validity. To determine these quantities at

all relevant arguments, simulation results were approximated

with second-order polynomials:
〈

∂u
∂ ln λr

〉

/kB = 647y − 107.9y2,

〈

∂u
∂ ln λa

〉

/kB = 1120y − 161.2y2.

From here on y = ρ/ρc , where ρc = 467.6 kg/m3 is the

critical density. Approximating polynomials are displayed

as curves in Fig. 3.

To determine excited molecule parameter changes, spec-

troscopic dependence [9] of the ν1/2ν2 Fermi dyad

1388 cm−1 Q-branch frequency on density measured at

33 ◦C was approximated using < 1u/kB > expansion over

these functions. For improved accuracy, dependencies [4],
measured at 22 and 50 ◦C were also utilized. The objective

function becomes:

F =
1

12

×

4
∑

i=1

(

νi(22
◦C)−ν0(22

◦C) − γ < 1u(22 ◦C, ρi)/kB >

νi(22 ◦C)

)2

+
1

18

×

18
∑

i=1

(

νi(33
◦C)−ν0(33

◦C) − γ < 1u(33 ◦C, ρi)/kB >

νi(33 ◦C)

)2

+
1

12

×

12
∑

i=1

(

νi(50
◦C)−ν0(50

◦C) − γ < 1u(50 ◦C, ρi)/kB >

νi(50 ◦C)

)2

.

Here νi(T ) is the measured [4,9] frequency (in cm−1)
at temperature T and density ρi . < 1u/kB > is the

approximating function, also dependent on the changes

in the logarithms of the parameters. The numerical

factor γ = 0.695034800 cm−1/K converts units from Kelvin

to reciprocal centimeters. Additional fitting parameters

are zero-density limit frequencies ν0, which depend on

both temperature and experimental conditions. Note that

dependencies in [4] are presented as smooth curves rather

than discrete points, which made it possible in their respect

to use (including molecular dynamic calculations) the same

density values as have been used for the temperature 33 ◦C.

These very densities are used in the first and third sums.

Minimization of the objective function yields relative

parameter changes (table). Associated change in molecular

interaction potential energy 1u(r)/kB is shown in Fig. 4.

The vertical line indicates the effective hard-sphere diameter

of approximately 0.374 nm at considered temperatures.

Values to the left of this line hold little significance due

to low probability.
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Figure 4. Change in the potential energy of interaction of two

CO2 molecules during vibrational excitation of one of them at a

frequency of 1388 cm−1 .
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Figure 5. Approximated experimental dependencies on density

of central frequency of 1388 cm−1 Q-branch of the ν1/2ν2 Fermi

dyad: (a) at 50 ◦C (measurements: dotted line, approximation: tri-

angles), (b) at 33 ◦C (measurements: circles, approximation: solid

line), (c) at 22 ◦C (measurements: dashed line, approximation:

squares). Graphs (a) and (c) are shifted by +1 and −1 cm−1

respectively.

Fig. 5 shows approximated experimental dependences of

Q-branch frequencies on density.

Conclusion

This work investigated modeling the density-induced

frequency shift of the 1388 cm−1 high-frequency Q-branch

in CO2 ν1/2ν2 Fermi dyad using particles interacting via

spherically symmetric potentials. The Lennard-Jones poten-

tial proved unsuitable for this purpose failing to accurately

reproduce pressure and configurational internal energy

simultaneously. The Mie potential was chosen instead,

with parameters determined to reproduce experimental

dependencies of carbon dioxide pressure and configuration
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Relative Mie potential parameter changes and other fitting parameters

1ε/ε 1σ/σ 1λr/λr 1λa/λa ν0(22
◦C) ν0(33

◦C) ν0(50
◦C)

(2.3± 5.5) · 10−4 (−4.5± 5.5) · 10−5 (2.5± 4.3) · 10−3 (−3.4± 2.3) · 10−3 1388.65 1388.29 1388.66

±0.04 cm−1
±0.04 cm−1

±0.04 cm−1

internal energy on density and temperature. Then by

finding appropriate relative changes in potential parameters,

dependencies of the Q-branch frequencies on density were

modeled. The resulting excited molecule potential change

can be used for simulating other characteristics such as

spectral broadening. Accuracy could be enhanced through

additional experimental results.
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