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Modeling the spectral shift of the higher-frequency Q-branch
of the v,/2v, CO, Fermi dyad using spherically symmetric potentials
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In this work is determined the type of spherically symmetric interaction potential of molecules and its parameters
to reproduce the dependences of pressure and configurational internal energy of carbon dioxide on density and
temperature. Using the change in potential during vibrational excitation, a model of experimental dependences of
the spectral shift of the higher-frequency Q-branch of the v;/2v; Fermi dyad on density is constructed.
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Introduction

Carbon dioxide takes part in many processes on Earth
and other planets. It’s playing a key role in forming a
planet’s climate. Definitely, one can’t ignore such an actual
problem as global warming. On the other hand, the applied
significance of this substance is also considerable. It is
difficult to overestimate the role it plays in medicine and
industries such as food and perfumery. Carbon dioxide in
liquid and supercritical states is used for extraction [1,2]
and impregnation [3]. Spontaneous Raman spectroscopy
and coherent anti-Stokes Raman scattering spectroscopy
(CARS) enable inexpensive and rapid analysis of thermody-
namic state and chemical composition. The determination
of CO, density via measurement of the frequency shifts
of Q-branches of the v;/2v, Fermi dyad has already been
achieved [4,5]. Omne of the key aspects of the correct
operation of such devices lies in accounting for the fact that
the dependence of frequency shift on density across a wide
density range generally does not follow a linear relationship
due to several effects. Among these is the local density
augmentation effect, which manifests in the effective average
density in the vicinity of a molecule being higher than
the overall average density of the substance, particularly
near the critical point. Local density augmentation begins
occurring even at relatively low densities due to the
formation of transient dimers [6], which can be considered
the smallest possible clusters [7]. As the critical point is
approached, cluster sizes increase.

Modeling the dependence of v;/2v, Fermi dyad fre-
quencies on density using molecular dynamics methods
has already been performed in [8]. In the present study,
an upside-down approach will be employed: based on
known dependencies [4,9] of frequency on density of
1388 cm™~! the higher-frequency Q-branch, the change in
the effective interaction potential between two molecules
upon vibrational excitation of one of them will be estimated.
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To reduce the number of parameters to be determined,
spherically symmetric intermolecular interaction potentials
were chosen.  The potential parameters must ensure
agreement with experimental data (available as empirical
equations) of certain macroscopic fluid characteristics.

Determination of the potential and its
parameters

The most widely recognized among spherically symmet-
ric intermolecular potentials is the Lennard-Jones potential,
depending on only two parameters:
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A difficulty arises in that no single set of these parameters
exists for CO, (see Table 1 in [10]). Parameters are
typically selected to optimally suit the specific task. Since
the experimental data considered in this work relate to
temperatures near the critical point, parameters for the
current task will be selected such that critical temper-
ature and density match experimental values. Critical
values of reduced thermodynamic quantities T* = kgT /e,
p* =po’/M, P* = Po3/e for a model fluid composed of
particles interacting pairwise via the Lennard-Jones potential
are given in [11]: T* =1.326, p* = 0.316, P* =0.111.
Here T, p, P, kg are temperature, density, pressure, and
the Boltzmann constant respectively, €, o are Lennard-Jones
potential parameters, and M = 44.010 - 1073 kg/mol is the
molar mass of carbon dioxide. From the values of critical
temperature and density, both parameters are calculated
as follows: & = 229.3567K - kg, 0 = 0.3668915nm. For
model validation, the critical pressure is obtained using
P* = 0.111, yieldingg P =0.111¢/0> = 7.12MPa, which
compares reasonably well with the experimentally estab-
lished value [12]: P¢ = 7.3773MPa. Prior to using the

o

r



Modeling the spectral shift of the higher-frequency Q-branch of the v,/2v, CO, Fermi dyad... 595

model, its capacity to reproduce pressure across a wide
density range at 306.15K (33°C) was tested. Rather
than plotting pressure itself, a related quantity called semi-
elasticity [13] of specific internal energy with respect
to owas computed:

(& 7)=% )

where M is the molar mass of CO,, R is the universal gas
constant, and < U > — denotes the average intermolecular
potential energy per molecule. The calculation results
within the Lennard-Jones model are shown in Figure 1, the
former utilizing the equation of state from [14]. Molecular
dynamics simulations were also performed. The number of
molecules was set to 2048. Periodic boundary conditions
were applied. Forces and potentials were truncated beyond
50 . Integration of mechanical equations employed a hybrid
NVT/NVE scheme: initially, particle count, volume, and
temperature were fixed, with temperature maintained via ki-
netic energy monitoring; subsequently, temperature control
was disabled, allowing the system to evolve under constant
energy for a certain period, at the final stage of which
necessary characteristics were accumulated to compute
average values. The averaging time was predominantly 3 ps,
except for two density values (545 and 900 kg/m?), where
it was extended to 6 and 4.2 ps respectively to minimize
deviation of average temperature from 33 °C. Simulation
results shown in Figure 1 exhibit significant scatter and
upward deviation near the critical density. Comparing semi-
elasticity (1) modeling results with those obtained via a
high-accuracy empirical equation of state [15] (Figure 1),
the model demonstrates satisfactory pressure prediction
capability. Beyond pressure agreement, (configurational)
internal energy must also align. Figure 2 displays plots
of configuration internal energy per molecule (divided by
kg) versus density. Included are results from the Lennard-
Jones model equation of state [14] and molecular dynamics
simulations. While computational and simulation results
coincide well, they noticeably differ from those obtained via
a reference empirical equation of state [16], also presented
in Figure 2. Regrettably, tuning € and o parameters fails to
simultaneously align both pressure and internal energy with
the experimental values.

To eliminate this discrepancy, the Mie potential (equa-
tion (2) in [10]) was considered as a prospective candidate:

a= 2 () () - ()]

This potential includes two additional parameters beyond
e and o: A, Aa. When they are set to 12 and 6
respectively, it reduces to the Lennard-Jones potential. [10]
justifies applying this potential for carbon dioxide due
to complex molecular interactions, including significant
quadrupole-quadrupole contributions.  Authors of [10]
developed a SAFT-VR equation of state for such a fluid
(Mie fluid), enabling computation of its properties through
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Figure 1. Dependence of internal energy semi-elasticity with
respect to o on density at 33 °C. Dashed and dotted lines represent
calculation results using equations of state for Lennard-Jones and
Mie potentials respectively. Molecular dynamics simulation results
for these potentials are shown as circles and squares. The solid line
indicates values obtained via the high-accuracy empirical equation
of state.
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Figure 2. Dependence of < u > /kg on p at 33 °C. Dashed and
dotted lines correspond to calculation results using equations of
state for Lennard-Jones and Mie potentials. Molecular dynamics
simulation results for these potentials are shown as circles and
squares. The solid line represents values from the high-accuracy
empirical equation of state. The dash-dot line and triangles show
calculation results via equation of state and molecular dynamics
for the Mie potential with parameters from [10].

argument values substitution into approximate equations.
They also determined Mie potential parameters by fitting
SAFT-VR equations to experimental data on saturated vapor
pressure and coexisting liquid-phase density of CO, over
a temperature range from the triple point to T/T. = 0.9,
where T¢ = 304.1K (31°C) [12] is the critical temperature.
This data selection differs somewhat from the 22—50°C
temperature range of our experimental dependencies, moti-
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vated by reduced SAFT-VR model accuracy near the critical
point. Parameters from [10] were used with the SAFT-VR
model to obtain configuration internal energy dependence
on density at 33 °C (Fig. 2), showing significantly improved
agreement with generalized experimental data. Corre-
sponding molecular dynamics results displayed even better
agreement at the same parameter values. To further improve
correspondence, this work similarly approximated available
through the empirical equation experimental data using the
SAFT-VR model for the Mie potential. Unlike [10], the
maximum temperature during phase equilibrium data fitting
was set close to critical 304 K. Data from the 33 °C isotherm
were also included. During this procedure, the configuration
internal energy was also fitted. As a result, the follow-
ing parameter values were obtained: & = 434.98K - kg,
o =0.379272nm, A, =20.1068, A, =9.11394.  These
parameters were used to compute dependencies of internal
energy semi-elasticity with respect to o and configuration
internal energy on density via SAFT-VR equations. Results
appear in Figures 1 and 2 respectively, alongside molec-
ular dynamics simulation results with 6 ps averaging time.
Noticeably, deviations from experimental data decreased.
Some discrepancy remains near critical density in Figure
1, possibly arising when correlation length approaches or
exceeds simulation cell dimensions. The critical temperature
of the Mie-potential fluid at these parameters is 299.5K [17],
which may be considered agreeing with its experimental
value in the context of the problem.

It is worth pointing out that the obtained potential
parameters should be regarded as effective. They must not
be used outside context, e.g., for determining long-range
molecular interactions. However, they remain applicable
for simulating moderately dense systems via molecular
dynamics, Monte Carlo, and similar methods.

Change in excited molecule potential

Assume the variation §u(r) of the interaction potential
between two molecules due to vibrational excitation of one
of them is small. The corresponding change in average
interaction energy of such a molecule with others in the
ground vibrational state becomes:

A<u>= n/ F(r)8u(r)4srdr,
0

where n is molecular concentration, F(r) is the pair
correlation function, and r — is the distance between
molecular centers. This energy change is responsible for
the spectral frequency shift.

Since u(r) here represents the Mie potential, its first-order
variation is expressed through parameter changes:

au_(r)Ag n au(r) Ao + au(r) A, + au(r)

sur) = —, 90 a YR
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Figure 3. Dependencies of averaged quantities on density at
33°C: < du/dlne > /Kkg (solid line), < du/dIno > /ks (dashed
line), < du/dInA; > /kg (circles), < du/dInla > /kg (triangles).
Quadratic approximations of the latter two are shown with dotted
and dash-dot lines.

Parameters ¢ and o are small in SI units. Therefore, for
convenience, Su(r) is expressed through relative parameter
changes: Ae/e =~ Alne, Ao/o ~Alno, A /A = Alnl,,
Ala/Aa = AlnAg:

au au

su(r) =% Atne + 2% Al
U(r) =gq, Alne + gy Alno

au au
+m Alnlr + m Aln;{a.

It’s worth noting the first term can be replaced by UAlne.
After averaging:

dlno

au au
+<8lnlr >Alnlr + <m>A1nAa.

The factor of 2 arises from the absence of 1/2 coefficient in
A < U > versus its presence in < U >:

A<us>=2<u>Alne+ <ﬂ>mna

o0

/F(r)u(r)4m2dr.

0

NS

< UuU>=

The high-accuracy empirical equation of state-derived de-
pendence of < du/dlne > /kg =2 <u> /kg on den-
sity at t =33°C appears in Fig. 3. The coefficient
< du/dlno >, in the second term, as mentioned in equa-
tion (1), relates to pressure (twice the < du/dIno >value
in that equation due to the above reason), also obtained
via empirical equation. Dependence of < du/dIno > /Kg
on density is also plotted along with other averages,
< du/dlnl, > /kg and < du/dInldy > /Kg, found using
molecular dynamics for 12 density values evenly distributed
in the range corresponding to the experimental results and
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ensuring the model validity. To determine these quantities at
all relevant arguments, simulation results were approximated
with second-order polynomials:

au

_ou _ _ 2
<Blnlr>/k8 647y — 107.9y2,

<%ula>/k3 — 1120y — 161.2y>.
From here on y = p/pc, where p. = 467.6kg/m> is the
critical density. Approximating polynomials are displayed
as curves in Fig. 3.

To determine excited molecule parameter changes, spec-
troscopic dependence [9] of the wv;/2v, Fermi dyad
1388cm™! Q-branch frequency on density measured at
33°C was approximated using < Au/kg > expansion over
these functions. For improved accuracy, dependencies [4],
measured at 22 and 50 °C were also utilized. The objective
function becomes:

1
=1

(Y (22°C) —p(22°C) — y < AU(22°C, pi)/Ks >\
- i (22°C)

L1
18

Xi 11(33°C)—1p(33°C) — y < Au(33°C, pi)/Kg >\
— 1 (33°C)

L1
12

Xi (vi (50°C)—vp(50°C) — y < Au(50°C, p; ) /Ks >>2
= i (50°C) .
Here v;i(T) is the measured [4,9] frequency (in cm™!)
at temperature T and density p;. < Au/kg > is the
approximating function, also dependent on the changes
in the logarithms of the parameters. The numerical
factor y = 0.695034800 cm™~!/K converts units from Kelvin
to reciprocal centimeters. Additional fitting parameters
are zero-density limit frequencies vy, which depend on
both temperature and experimental conditions. Note that
dependencies in [4] are presented as smooth curves rather
than discrete points, which made it possible in their respect
to use (including molecular dynamic calculations) the same
density values as have been used for the temperature 33 °C.
These very densities are used in the first and third sums.

Minimization of the objective function yields relative
parameter changes (table). Associated change in molecular
interaction potential energy Au(r)/kg is shown in Fig. 4.
The vertical line indicates the effective hard-sphere diameter
of approximately 0.374nm at considered temperatures.
Values to the left of this line hold little significance due
to low probability.
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Figure 4. Change in the potential energy of interaction of two

CO; molecules during vibrational excitation of one of them at a

frequency of 1388cm™".
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Figure 5. Approximated experimental dependencies on density
of central frequency of 1388 cm™! Q-branch of the v;/2v, Fermi
dyad: (a) at 50 °C (measurements: dotted line, approximation: tri-
angles), (b) at 33 °C (measurements: circles, approximation: solid
line), (c) at 22°C (measurements: dashed line, approximation:
squares). Graphs (a) and (c) are shifted by +1 and —1cm™"
respectively.

Fig. 5 shows approximated experimental dependences of
Q-branch frequencies on density.

Conclusion

This work investigated modeling the density-induced
frequency shift of the 1388 cm~! high-frequency Q-branch
in CO; vi/2v, Fermi dyad using particles interacting via
spherically symmetric potentials. The Lennard-Jones poten-
tial proved unsuitable for this purpose failing to accurately
reproduce pressure and configurational internal energy
simultaneously. The Mie potential was chosen instead,
with parameters determined to reproduce experimental
dependencies of carbon dioxide pressure and configuration
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Relative Mie potential parameter changes and other fitting parameters

Ae/e Ao /o Ade /2 MAa/2a 19(22°C) 1(33°C) vo(50°C)
(23£55)- 107 | (—4.5+5.5)-107° | (2.5+4.3)-107 | (=3.4+£2.3).10° 1388.65 1388.29 1388.66
+0.04cm™" | £0.04cm™" | £0.04cm™!

internal energy on density and temperature. Then by
finding appropriate relative changes in potential parameters,
dependencies of the Q-branch frequencies on density were
modeled. The resulting excited molecule potential change
can be used for simulating other characteristics such as
spectral broadening. Accuracy could be enhanced through
additional experimental results.
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