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The relationship between the processes of photon decay into an electron-positron pair and photon emission from

vacuum with pair production in an external electromagnetic field is investigated. It is known that in the case when

the external field is not capable of producing particles from vacuum within the zeroth order in radiative interaction,

the contribution of radiation is also zero, and the probability of photon decay in accordance with the optical theorem

can be associated with the imaginary part of the second-order Feynman diagram containing a fermion loop. In this

paper, the main attention is paid to the problem with unstable vacuum. It is shown that in this case the statement of

the optical theorem is modified since a nonzero probability of emission with pair production must be added to the

probability of photon decay. In our numerical calculations, both of these probabilities are obtained nonperturbatively

with respect to the interaction with an external alternating electric field for various photon polarizations. The results

of calculating the imaginary part of the one-loop diagram turned out to be in complete agreement with the optical

theorem. It is also shown that the locally-constant field approximation is inapplicable in the region of low photon

energies and can give a significant error in the high-energy region. The paper also analyzes the phenomenon of

vacuum dichroism, i.e., the dependence of the above-described contributions on the photon polarization.
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1. Introduction

Description of electromagnetic interactions within quan-

tum field theory includes consideration of processes with

non-conserved particle numbers (electrons, positrons, pho-
tons, etc.). For example, to first order in the fine structure

constant in quantum electrodynamics α there are processes

of photon emission by an electron, photon absorption by

an electron, photon decay into an electron-positron pair,

etc. It is well known that all these elementary reactions

are prohibited by the laws of conservation of energy and

momentum in the absence of any other interactions [1]. The
situation changes qualitatively if we introduce interaction of

the quantized electron-positron field with an external clas-

sical electromagnetic field. In this case, the probabilities of

all processes of the first order in alpha α, are generally non-

zero, and the theoretical description of the corresponding

effects in the regime of a strong external field represents

an extremely non-trivial problem (see, for example, mono-

graph [2], work [3] and recent reviews [4–6]). Interest in this

problem is determined not only by its fundamental nature

but also by the development of experimental setups in which

increasingly strong electromagnetic fields can be created,

for example, through laser radiation generation (references
in [5,6]) or collisions of heavy nuclei [7–9].

In the present work, we are interested in the process

of photon decay into a pair (in the first order of α)

and photon emission from vacuum with pair creation in

a strong electromagnetic field. These two phenomena are

closely related for several reasons. Firstly, the amplitudes

of such processes differ only by complex conjugation of the

”
wave function“ of the corresponding photon. Secondly, the

difference in probabilities of these two reactions determines

the first-order contribution in α to the number of photons in

the final state, as shown in work [10] (see also [2]). Thirdly,
the sum of such probabilities can be related to the imaginary

part of a one-loop diagram with two external photon lines

according to the optical theorem. We emphasize that

in a theory with an unstable vacuum, the statement of

the optical theorem must include the probabilities of both

processes, although in standard QED without vacuum pair

production, it is sufficient to consider only the contribution

from photon decay [1]. In diagram language, this statement

is shown in Fig. 1. In the present work, we will discuss

how this relation is proven and perform calculations of

the two separate contributions on the right-hand side of

the equality in Fig. 1. Using the optical theorem, we

will test our independent numerical approach for finding

the polarization tensor, which determines the left-hand side

of the equation. Besides direct verification of our non-

perturbative calculation methods, this will allow us to in-

vestigate the dependence of photon decay and pair-creation

photon emission processes on photon polarization. The fact

that photon decay probability depends on polarization is
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Figure 1. Diagram representation of the optical theorem. Double

lines correspond to electron functions in an external field, and

wavy lines represent the initial and final photon with momentum

q and polarization ̹. Fermion in-statesn and m are usually

characterized by momenta and spin quantum numbers at initial

times tin → −∞.

called vacuum dichroism [11]. Below, we will investigate the

dichroism phenomenon through numerical non-perturbative

calculations. Further development of theoretical methods

is of great importance for planning experiments to observe

corresponding nonlinear QED effects in strong fields.

In the main text of the article, we use units ~ = c = 1

(~ is Planck’s constant, c is the speed of light), the

fine structure constant α = e2/(4π), m and e < 0 are the

electron mass and charge.

2. Theory with stable vacuum. Constant
crossed fields

Consider first a relatively simple case where the external

electromagnetic field does not produce pairs from vacuum.

Such a situation is realized, for example, in a constant

magnetic field or in the field of a plane electromagnetic

wave [2]. In this case, the initial vacuum state |0, in〉 and

final state |0, out〉 coincide up to a complex phase factor,

which does not affect physical observables. This state can

simply be denoted as |0〉. Let the initial state contain a

photon with momentum q and polarization ̹. Within QED

in the interaction representation, the photon number density

in the final state has the form [2]

nkλ = 〈0|cq̹S†c†
kλckλSc†

q̹|0〉, (1)

where k and λ specify the momentum and polarization of

the final photon, c†
kλ is the photon creation operator, and

S is the scattering operator in the interaction representation:

S = T exp

[

−i
∫

d4x Hint(x)

]

. (2)

Here T is the time-ordering operation,

Hint(x) = jµ(x)Aµ(x) is the interaction operator of

quantized fields, and jµ(x) = (e/2)[ψ̄(x)γµ, ψ(x)] is the

current density operator of the electron-positron field in

the presence of an external classical field Aµ(x). As

shown in [10], to first order in the fine-structure constant α,

quantity (1) includes the difference between the first and

second terms on the right-hand side of Fig. 1, of which only

the negative contribution remains in the theory with stable

vacuum. Thus, the first-order contribution in α is minus the

squared magnitude of the photon decay diagram, summed

over final fermion states. The presence of non-trivial

dependence of this quantity on photon polarization means

that vacuum dichroism occurs — photons of different

polarizations decay with different probabilities.

To second order in α density (1) is determined by the

squared magnitude of the one-loop diagram shown on the

left side of Fig. 1, but with the final photon state k, λ [11].
The transition amplitude for this diagram is related to the

polarization tensor by the relation

T (q, k) =
1√

4q0k0

εµ(q)5µν (q, k)ε∗ν (k), (3)

where εµ(q) and εν(k) are 4-vectors of polarization of

the initial and final photons, respectively. The problem of

finding this amplitude reduces to calculating the polarization

tensor 5µν(q, k) in a given external field. Consider as

an example a specific configuration of the external field

that does not produce pairs from vacuum. Assume that

a constant electric field E of magnitude E0 is directed

along the x axis, and an equal magnitude magnetic field

H is directed along the y axis. Since in such a field the

relativistic invariants E2 − H2 and E · H are exactly zero,

it is well known that the vacuum is stable [1–3]. The

polarization operator for this case was calculated analytically

in works [12–15]. Assuming that the photon propagates

along the z axis, we can write the result in the following

form:

(

511(q, k)
522(q, k)

)

= −16π3α

3
m2δ(k − q)χ2/3

(

A − B
A + 2B

)

, (4)

where the quantum nonlinearity parameter is

χ =
2|eE0|q0

m3
, (5)

and the following notations are introduced:

A =

1
∫

−1

dvw1/3 f ′(u), B =

1
∫

−1

dvw−2/3 f ′(u), (6)

w =
4

1− v2
, u =

(

w

χ

)2/3

, (7)

f (u) = i

∞
∫

0

dτ e−i(uτ+τ 3/3) = πGi(u) + iπAi(u). (8)

Here Gi(u) and Ai(u) are real-valued Scorer [16] and Airy

functions, respectively.

Now let’s calculate twice the imaginary part of amplitude

(3) at k = q per unit time and unit volume, for example,

for a photon polarized along the x axis (µ = ν = 1):

2 Im T (1)(q, q)

V T
= −αm2χ2/3

3πq0
Im (A − B). (9)

Optics and Spectroscopy, 2025, Vol. 133, No. 6



Optical theorem and vacuum dichroism in electromagnetic fields producing pairs 629

Due to the evenness of the integrand functions in (6), we

can write

Im (A − B) = 2π

1
∫

0

dv
w − 1

w2/3
Ai′(u)

= 4π

∞
∫

4

dw
w − 1

w5/3
√

w(w − 4)
Ai′(u). (10)

If we now switch to the integral over variable u, we obtain

2 Im T (1)(q, q)

V T
= −2αm2χ

q0

∞
∫

u0

du√
u

w − 1

w
√

w(w − 4)
Ai′(u)

= − αm2χ

8q0

∞
∫

u0

du√
u

4w − 1

w

√

w(w − 1)
Ai′(u),

(11)

where u0 = (4/χ)2/3 and w = (χ/4)u3/2. Expression (11)

completely coincides with the probability of decay of a

polarized photon with pair creation per unit time from

Ritus’s work [3] (item 5.23). For the second possible

polarization, it is also not difficult to verify consistency

of the results, which confirms the validity of the optical

theorem in its simplest formulation: twice the imaginary

part of the diagram with a closed fermion loop equals

the total probability of decay of the initial photon into an

electron-positron pair. If the external field violates vacuum

stability, then to the decay probability one needs to add the

probability of pair production with photon emission. The

remaining part of this paper is devoted to the analysis of

this more general case.

At the end of this section, we note that closed-form

expressions (4) are often used for approximate description

of radiation-induced processes in inhomogeneous fields. For

this purpose, χ is taken as the local value of parameter

(5), and then contributions (4) are integrated over time and

spatial coordinates [11,17,18]. This approach is called the

locally constant field approximation (LCFA).

3. Theory with unstable vacuum

If the external field produces pairs from vacuum to zeroth

order in α, then the initial and final Heisenberg vacuum

states |0, in〉 and |0, out〉 differ not only by a phase in this

case |〈0, out|0, in〉| < 1, and the initial vacuum transitions

with non-zero probability into states with real particles [19].

Expression (1) is now written as

nkλ = 〈0, in|cq̹S†c†
kλckλSc†

q̹|0, in〉. (12)

To first order in α the contribution to photon number density

has the form [10]

n(1)
k,λ = e2δ(k−q)δλ̹

∑

n,m

∣

∣

∣

∣

∫

d4x +ϕ̄n(x)γµ f ∗
q,̹,µ(x)−ϕm(x)

∣

∣

∣

∣

2

− e2δ(k − q)δλ̹
∑

n,m

∣

∣

∣

∣

∫

d4x +ϕ̄n(x)γµ f q,̹,µ(x)−ϕm(x)

∣

∣

∣

∣

2

,

(13)
where f q,̹,µ(x) is the ”wave function” of a photon with

momentum q and polarization ̹, and +ϕn(x) and −ϕm(x)
are in-solutions of the Dirac equation in an external field,

specified in the asymptotic past by quantum numbers n
and m (these numbers usually include momentum and spin

quantum number). At times x0 → +∞ in-solutions become

superpositions of solutions of the free Dirac equation with

different energy signs. The presence of a solution with

the opposite energy sign precisely means vacuum pair

production [2]. The contribution to the total number

of photons is obtained by integrating (13) over k and

multiplying by factor (2π)3/V , where V is the system

volume. If one needs to consider a spatially localized

external field, the initial single-photon states in (12) should

be chosen in the form of wave packets. The two terms

in formula (13) correspond to diagrams on the right-hand

side of Fig. 1. The minus sign before the second sum

is related to the fact that as a result of the possible

photon decay, the number of final quanta decreases. The

first term is positive and can be interpreted as stimulated

emission from vacuum. Note that quantity n(1)
k,λ also contains

contributions from vacuum emission in the absence of an

initial photon [2,10,20–26], but we do not account for these

terms since they do not contain δ(k − q). When detecting

photons propagating along direction q in a small angular

vicinity, vacuum contributions will be negligibly small.

Now let’s turn to the general expression for the polariza-

tion tensor in an external field, taking into account vacuum

instability:

5µν(q, k) = ie2
∫

d4x
∫

d4y e−iqxeiky Tr [γµ

× S in(x , y)γνS in(y, x)] − {zero-field contribution}. (14)

Here S in(x , y) = i〈0, in|T[ψ(x)ψ̄(y)]|0, in〉 is the electron

Green’s function in an external field with respect to the

in-vacuum. We will consider an external time-dependent

electric field directed along the x axis, and the photon

momentum will again be directed along the z axis. Photon

polarizations along x and along y will be denoted by

numbers 1 and 2, respectively. Let P(1,2)
d denote the photon

decay probability, and P(1,2)
e denote the total probability of

emission of such a photon with pair creation. According to

the optical theorem formulated above, we have

P(1)
d + P(1)

e =
1

V
1

q0
Im511(q, q). (15)
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A similar relation holds for polarization 2. On the right

side, volume V cancels out due to the presence of delta

function δ(k − q) in 5µν(q, k). In Section 2, we verified this

statement in the case when P(1,2)
e = 0. To prove the optical

theorem, it is sufficient to consider integration in formula

(14) over regions x0 > y0 and x0 < y0. For each term,

one can use spectral decomposition of propagators S in(x , y).
When calculating the imaginary part, the integral over each

half-plane can easily be rewritten through an integral over all

x0 and y0 and the result is written as the squared magnitude

of the first-order diagram.

Calculation of the polarization tensor in our chosen

external field is performed by using the spectral decom-

position of Green’s functions. Solutions of the Dirac

equation are constructed numerically. It is important to

emphasize that the external field is accounted for fully non-

perturbatively. Similarly, though technically significantly

simpler, we find the individual probabilities P(1,2)
d and P(1,2)

e .

The numerical method in this case is described in detail

in works [10,25]. In the next section, we will compare

the results of numerical calculations, verify compliance

with relations (15), and investigate properties of vacuum

dichroism. Finally, comparison with LCFA method will be

carried out, within which expressions (4) are integrated over

time taking into account local dependence of parameter χ

through the time dependence of the external field.

Note that to second order in α quantity (12) is determined

by the squared magnitude of the diagram with a closed

fermion loop. In particular, the corresponding contribution

describes the phenomenon of vacuum birefringence [11,27–
39].

4. Numerical results and discussion

We will consider a time-dependent electric field directed

along the x axis and defined using the following x -projection
of the vector potential:

Ax (t) =
E0

ω
e−t2/τ 2

sinωt, (16)

where E0 is the pulse amplitude, τ is the characteristic

duration, and ω is the carrier frequency. The projection

of the electric field on the x axis is Ex (t) = −A
′
x(t). In our

chosen system of units, frequency, energy, and momentum

have dimension m; the critical (Schwinger) value of field

strength is Ec = m2/|e| ≈ 1.3× 1018 V/m.

First, calculations of individual contributions on the right-

hand side of Fig. 1 were performed, i.e., photon decay

probabilities P(1,2)
d and photon emission with pair creation

P(1,2)
e were obtained for two different polarizations (1 -

along x , 2 — along y). Note that due to the finite duration

of the external electric pulse, we are dealing with total

(dimensionless) probabilities. Figure 2 shows dependencies

of these quantities on photon energy for the following

set of external field parameters: E0 = 0.2Ec, τ = 2m−1,

ω = 0.2m. We observe several characteristic features of the

(1)
P e

(2)
P e

(1)
P d

(2)
P d

Figure 2. Dependence of photon decay probabilities P(1,2)
d

and photon emission with pair creation P(1,2)
e on photon energy

q0 . Indices 1 and 2 denote polarization along the external

electric field x) axis) and perpendicular to the field y axis).
The photon propagates along the z ; axis; the external field is

given by expression (16). The following parameters were chosen:

E0 = 0.2Ec, τ = 2m−1, ω = 0.2m (Ec is the Schwinger field

strength).

obtained graphs. First, at low photon energies, probabilities

grow proportionally to (1/q0)
3. This property was described

in detail in works [10,23,25], where the corresponding

asymptotics was established analytically. An important

circumstance is that such behavior is possible only in fields

producing pairs; otherwise, probability rapidly tends to zero

as q0 → 0. In terms of photon number (12), the observed

growth means, for example, that when pairs are produced,

a very large number of soft photons can also be emitted. It

should be noted that at P & 1 quantity P obviously cannot

be interpreted as probability anymore, and contributions of

higher orders need to be considered. Second, at small

q0 we have P(1,2)
d ≈ P(1,2)

e (solid and dashed lines on

Fig. 2 coincide pairwise). This fact automatically follows

from the fact that, as noted in the Introduction, diagrams

on the right-hand side of Fig. 1 differ only by complex

conjugation of the photon function, so when expanding

in powers of 1/q0 odd contributions will coincide, and

even ones will differ in sign. Further, as photon energy

increases, quantities P decrease, but after a certain energy,

photon decay probability P(1,2)
d begins to grow. This growth

conventionally occurs in problems with stable vacuum

immediately as q0 > 0. For example, in crossed fields,

probability (11) behaves as (χ/q0)exp(−8/3χ), at small

energies, where χ ∼ q0 for fixed field magnitude. It

should be noted that at high energies this same probability

is proportional to χ2/3/q0 ∼ (q0)−1/3, which qualitatively

explains the fact that curves P(1,2)
d in Fig. 2 increase

only over a fairly limited interval of photon energies, when

parameter χ = |eE0|q0/m3 changes approximately from 0.1

to 1 (in crossed fields parameter χ in (5) contained factor

Optics and Spectroscopy, 2025, Vol. 133, No. 6
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Figure 3. Dependence of sum of probabilities

P(1,2) = P(1,2)
e + P(1,2)

d on photon energy. Points mark data

obtained by independent calculation of the imaginary part of

polarization tensor 511 using the optical theorem. External field

parameters are chosen the same as in Fig. 2.

2 due to the presence of magnetic component). We

emphasize that comparison with the crossed fields case

for the chosen parameters is possible only qualitatively,

since duration τ does not allow considering the external

field as locally constant (see below). Finally, note that at

sufficiently large photon energies, photon decay probability

exceeds pair-creation photon emission probability by several

orders of magnitude, so P(1,2)
e + P(1,2)

d ≈ P(1,2)
d and in the

optical theorem, the emission channel can be neglected.

The discrepancy between curves P(1)
d and P(2)

d indicates

vacuum dichroism. We see that the difference between

these two quantities changes sign as q0 varies, indicating

non-trivial behavior of the dichroism signal and must be

considered when searching for the most favorable scenarios

for experimental observation of the effect.

Figure 3 shows sums of probabilities

P(1,2) = P(1,2)
e + P(1,2)

d for two polarizations (solid and

dashed curves). Values of these sums can be directly

compared with results of calculating the imaginary part

of the polarization tensor in the chosen external field.

Through independent calculation of the loop diagram and

considering the optical theorem, we obtained values for

P(1) shown in Fig. 3 as dots. The two different approaches

turned out to be in complete agreement, which indicates

a high degree of reliability of the numerical methods

used. As noted above, we observe growth of probabilities

when moving to low energies, which occurs in fields that

produce particles. At high energies, total probabilities are

determined primarily by the photon decay channel.

In the example above, pulse duration and
”
frequency“ are

related by ωτ = 0.4, which means that no slow envelope

can be distinguished in such a pulse. In fact, the external

field barely changes with further decrease of ω, so the

characteristic frequency is determined by parameter τ and

0.1 1

–6
10

0q /m

P

20

–4
10

–2
10

(1)P

(2)P

(1)P  (LCFA)

(2)P  (LCFA)

–5
10

–3
10

10

Figure 4. Dependence of sum of probabilities

P(1,2) = P(1,2)
e + P(1,2)

d on photon energy similar to Fig. 3,

but for another set of parameters: E0 = 0.4Ec, τ = 10m−1,

ω = 0.1m. Besides results of direct numerical calculations, the

graph also shows curves obtained within the LCFA approximation.

has magnitude of order m. Then the ratio of field amplitude

to frequency in units of m/|e| equals ξ ∼ 0.2. For LCFA

applicability, the field should change slowly, i.e., condition

ξ ≫ 1 [3] is required (or at least ξ & 1). Now consider a

field with larger amplitude and lower frequency. Figure

4 shows similar dependencies as in Fig. 3, but for the

following parameters: E0 = 0.4Ec, τ = 10m−1, ω = 0.1m.

The electric pulse has qualitatively the same shape as

before, but now its frequency is of order ω = 0.1m, giving

ξ = |e|E0/(mω) = 4. Figure 4 also shows approximate

curves obtained within the LCFA. We see that at sufficiently

high photon energies, LCFA agrees with results of exact

calculations. Of course, agreement is impossible in the

region of small energies since LCFA completely ignores

the vacuum instability effect. In terms of χ the condition

for LCFA applicability at high energies has the form

χ2 ≫ E0/Ec [3]. We observe high accuracy at energies of

order 5m–10m, which corresponds to χ = 2−4 and agrees

with this criterion. It is worth noting separately that when

deviating from LCFA predictions, exact curves exhibit quite

non-trivial behavior, including crossing of curves as in the

previous example, i.e., change of the sign of the vacuum

dichroism signal.

5. Conclusion

In this work, probabilities of photon decay and photon

emission with pair creation in a time-dependent external

electric field were calculated. In particular, the dependence

of probabilities on photon energy and polarization was

studied. The sum of probabilities was also obtained by

independent calculation of the imaginary part of the polar-

ization tensor in the given external field. It was shown that

Optics and Spectroscopy, 2025, Vol. 133, No. 6
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the above processes depend on photon polarization, which

is a manifestation of vacuum dichroic properties. Within

the locally constant field approximation, the imaginary part

of the polarization tensor was calculated, and it was found

that this approximate approach does not account for growth

at low photon energies, which is associated with vacuum

instability. In the domain of strong slowly varying fields and

high photon energies, agreement between the approximate

method and exact numerical approach was found.
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